Dataset Viewer
id
stringlengths 11
95
| author
stringlengths 3
36
| task_category
stringclasses 16
values | tags
sequencelengths 1
4.05k
| created_time
timestamp[s]date 2022-03-02 23:29:04
2025-03-18 02:34:30
| last_modified
timestamp[s]date 2021-05-13 19:09:22
2025-03-18 03:19:02
| downloads
int64 0
15.6M
| likes
int64 0
4.86k
| README
stringlengths 246
1.01M
| matched_task
sequencelengths 1
8
| matched_bigbio_names
sequencelengths 1
8
|
---|---|---|---|---|---|---|---|---|---|---|
WhereIsAI/UAE-Large-V1 | WhereIsAI | feature-extraction | [
"sentence-transformers",
"onnx",
"safetensors",
"openvino",
"bert",
"feature-extraction",
"mteb",
"sentence_embedding",
"feature_extraction",
"transformers",
"transformers.js",
"en",
"arxiv:2309.12871",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | 2023-12-04T02:03:27 | 2024-12-31T08:00:51 | 15,561,625 | 220 | ---
language:
- en
license: mit
tags:
- mteb
- sentence_embedding
- feature_extraction
- sentence-transformers
- transformers
- transformers.js
model-index:
- name: UAE-Large-V1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 75.55223880597015
- type: ap
value: 38.264070815317794
- type: f1
value: 69.40977934769845
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 92.84267499999999
- type: ap
value: 89.57568507997713
- type: f1
value: 92.82590734337774
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.292
- type: f1
value: 47.90257816032778
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 42.105
- type: map_at_10
value: 58.181000000000004
- type: map_at_100
value: 58.653999999999996
- type: map_at_1000
value: 58.657000000000004
- type: map_at_3
value: 54.386
- type: map_at_5
value: 56.757999999999996
- type: mrr_at_1
value: 42.745
- type: mrr_at_10
value: 58.437
- type: mrr_at_100
value: 58.894999999999996
- type: mrr_at_1000
value: 58.897999999999996
- type: mrr_at_3
value: 54.635
- type: mrr_at_5
value: 56.99999999999999
- type: ndcg_at_1
value: 42.105
- type: ndcg_at_10
value: 66.14999999999999
- type: ndcg_at_100
value: 68.048
- type: ndcg_at_1000
value: 68.11399999999999
- type: ndcg_at_3
value: 58.477000000000004
- type: ndcg_at_5
value: 62.768
- type: precision_at_1
value: 42.105
- type: precision_at_10
value: 9.110999999999999
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 23.447000000000003
- type: precision_at_5
value: 16.159000000000002
- type: recall_at_1
value: 42.105
- type: recall_at_10
value: 91.11
- type: recall_at_100
value: 99.14699999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 70.341
- type: recall_at_5
value: 80.797
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 49.02580759154173
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.093601280163554
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.19590406875427
- type: mrr
value: 77.09547992788991
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 87.86678362843676
- type: cos_sim_spearman
value: 86.1423242570783
- type: euclidean_pearson
value: 85.98994198511751
- type: euclidean_spearman
value: 86.48209103503942
- type: manhattan_pearson
value: 85.6446436316182
- type: manhattan_spearman
value: 86.21039809734357
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.69155844155844
- type: f1
value: 87.68109381943547
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.37501687500394
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 37.23401405155885
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.232
- type: map_at_10
value: 41.404999999999994
- type: map_at_100
value: 42.896
- type: map_at_1000
value: 43.028
- type: map_at_3
value: 37.925
- type: map_at_5
value: 39.865
- type: mrr_at_1
value: 36.338
- type: mrr_at_10
value: 46.969
- type: mrr_at_100
value: 47.684
- type: mrr_at_1000
value: 47.731
- type: mrr_at_3
value: 44.063
- type: mrr_at_5
value: 45.908
- type: ndcg_at_1
value: 36.338
- type: ndcg_at_10
value: 47.887
- type: ndcg_at_100
value: 53.357
- type: ndcg_at_1000
value: 55.376999999999995
- type: ndcg_at_3
value: 42.588
- type: ndcg_at_5
value: 45.132
- type: precision_at_1
value: 36.338
- type: precision_at_10
value: 9.17
- type: precision_at_100
value: 1.4909999999999999
- type: precision_at_1000
value: 0.196
- type: precision_at_3
value: 20.315
- type: precision_at_5
value: 14.793000000000001
- type: recall_at_1
value: 30.232
- type: recall_at_10
value: 60.67399999999999
- type: recall_at_100
value: 83.628
- type: recall_at_1000
value: 96.209
- type: recall_at_3
value: 45.48
- type: recall_at_5
value: 52.354
- type: map_at_1
value: 32.237
- type: map_at_10
value: 42.829
- type: map_at_100
value: 44.065
- type: map_at_1000
value: 44.199
- type: map_at_3
value: 39.885999999999996
- type: map_at_5
value: 41.55
- type: mrr_at_1
value: 40.064
- type: mrr_at_10
value: 48.611
- type: mrr_at_100
value: 49.245
- type: mrr_at_1000
value: 49.29
- type: mrr_at_3
value: 46.561
- type: mrr_at_5
value: 47.771
- type: ndcg_at_1
value: 40.064
- type: ndcg_at_10
value: 48.388
- type: ndcg_at_100
value: 52.666999999999994
- type: ndcg_at_1000
value: 54.67100000000001
- type: ndcg_at_3
value: 44.504
- type: ndcg_at_5
value: 46.303
- type: precision_at_1
value: 40.064
- type: precision_at_10
value: 9.051
- type: precision_at_100
value: 1.4500000000000002
- type: precision_at_1000
value: 0.193
- type: precision_at_3
value: 21.444
- type: precision_at_5
value: 15.045
- type: recall_at_1
value: 32.237
- type: recall_at_10
value: 57.943999999999996
- type: recall_at_100
value: 75.98700000000001
- type: recall_at_1000
value: 88.453
- type: recall_at_3
value: 46.268
- type: recall_at_5
value: 51.459999999999994
- type: map_at_1
value: 38.797
- type: map_at_10
value: 51.263000000000005
- type: map_at_100
value: 52.333
- type: map_at_1000
value: 52.393
- type: map_at_3
value: 47.936
- type: map_at_5
value: 49.844
- type: mrr_at_1
value: 44.389
- type: mrr_at_10
value: 54.601
- type: mrr_at_100
value: 55.300000000000004
- type: mrr_at_1000
value: 55.333
- type: mrr_at_3
value: 52.068999999999996
- type: mrr_at_5
value: 53.627
- type: ndcg_at_1
value: 44.389
- type: ndcg_at_10
value: 57.193000000000005
- type: ndcg_at_100
value: 61.307
- type: ndcg_at_1000
value: 62.529
- type: ndcg_at_3
value: 51.607
- type: ndcg_at_5
value: 54.409
- type: precision_at_1
value: 44.389
- type: precision_at_10
value: 9.26
- type: precision_at_100
value: 1.222
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 23.03
- type: precision_at_5
value: 15.887
- type: recall_at_1
value: 38.797
- type: recall_at_10
value: 71.449
- type: recall_at_100
value: 88.881
- type: recall_at_1000
value: 97.52
- type: recall_at_3
value: 56.503
- type: recall_at_5
value: 63.392
- type: map_at_1
value: 27.291999999999998
- type: map_at_10
value: 35.65
- type: map_at_100
value: 36.689
- type: map_at_1000
value: 36.753
- type: map_at_3
value: 32.995000000000005
- type: map_at_5
value: 34.409
- type: mrr_at_1
value: 29.04
- type: mrr_at_10
value: 37.486000000000004
- type: mrr_at_100
value: 38.394
- type: mrr_at_1000
value: 38.445
- type: mrr_at_3
value: 35.028
- type: mrr_at_5
value: 36.305
- type: ndcg_at_1
value: 29.04
- type: ndcg_at_10
value: 40.613
- type: ndcg_at_100
value: 45.733000000000004
- type: ndcg_at_1000
value: 47.447
- type: ndcg_at_3
value: 35.339999999999996
- type: ndcg_at_5
value: 37.706
- type: precision_at_1
value: 29.04
- type: precision_at_10
value: 6.192
- type: precision_at_100
value: 0.9249999999999999
- type: precision_at_1000
value: 0.11
- type: precision_at_3
value: 14.802000000000001
- type: precision_at_5
value: 10.305
- type: recall_at_1
value: 27.291999999999998
- type: recall_at_10
value: 54.25299999999999
- type: recall_at_100
value: 77.773
- type: recall_at_1000
value: 90.795
- type: recall_at_3
value: 39.731
- type: recall_at_5
value: 45.403999999999996
- type: map_at_1
value: 18.326
- type: map_at_10
value: 26.290999999999997
- type: map_at_100
value: 27.456999999999997
- type: map_at_1000
value: 27.583000000000002
- type: map_at_3
value: 23.578
- type: map_at_5
value: 25.113000000000003
- type: mrr_at_1
value: 22.637
- type: mrr_at_10
value: 31.139
- type: mrr_at_100
value: 32.074999999999996
- type: mrr_at_1000
value: 32.147
- type: mrr_at_3
value: 28.483000000000004
- type: mrr_at_5
value: 29.963
- type: ndcg_at_1
value: 22.637
- type: ndcg_at_10
value: 31.717000000000002
- type: ndcg_at_100
value: 37.201
- type: ndcg_at_1000
value: 40.088
- type: ndcg_at_3
value: 26.686
- type: ndcg_at_5
value: 29.076999999999998
- type: precision_at_1
value: 22.637
- type: precision_at_10
value: 5.7090000000000005
- type: precision_at_100
value: 0.979
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 12.894
- type: precision_at_5
value: 9.328
- type: recall_at_1
value: 18.326
- type: recall_at_10
value: 43.824999999999996
- type: recall_at_100
value: 67.316
- type: recall_at_1000
value: 87.481
- type: recall_at_3
value: 29.866999999999997
- type: recall_at_5
value: 35.961999999999996
- type: map_at_1
value: 29.875
- type: map_at_10
value: 40.458
- type: map_at_100
value: 41.772
- type: map_at_1000
value: 41.882999999999996
- type: map_at_3
value: 37.086999999999996
- type: map_at_5
value: 39.153
- type: mrr_at_1
value: 36.381
- type: mrr_at_10
value: 46.190999999999995
- type: mrr_at_100
value: 46.983999999999995
- type: mrr_at_1000
value: 47.032000000000004
- type: mrr_at_3
value: 43.486999999999995
- type: mrr_at_5
value: 45.249
- type: ndcg_at_1
value: 36.381
- type: ndcg_at_10
value: 46.602
- type: ndcg_at_100
value: 51.885999999999996
- type: ndcg_at_1000
value: 53.895
- type: ndcg_at_3
value: 41.155
- type: ndcg_at_5
value: 44.182
- type: precision_at_1
value: 36.381
- type: precision_at_10
value: 8.402
- type: precision_at_100
value: 1.278
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 19.346
- type: precision_at_5
value: 14.09
- type: recall_at_1
value: 29.875
- type: recall_at_10
value: 59.065999999999995
- type: recall_at_100
value: 80.923
- type: recall_at_1000
value: 93.927
- type: recall_at_3
value: 44.462
- type: recall_at_5
value: 51.89
- type: map_at_1
value: 24.94
- type: map_at_10
value: 35.125
- type: map_at_100
value: 36.476
- type: map_at_1000
value: 36.579
- type: map_at_3
value: 31.840000000000003
- type: map_at_5
value: 33.647
- type: mrr_at_1
value: 30.936000000000003
- type: mrr_at_10
value: 40.637
- type: mrr_at_100
value: 41.471000000000004
- type: mrr_at_1000
value: 41.525
- type: mrr_at_3
value: 38.013999999999996
- type: mrr_at_5
value: 39.469
- type: ndcg_at_1
value: 30.936000000000003
- type: ndcg_at_10
value: 41.295
- type: ndcg_at_100
value: 46.92
- type: ndcg_at_1000
value: 49.183
- type: ndcg_at_3
value: 35.811
- type: ndcg_at_5
value: 38.306000000000004
- type: precision_at_1
value: 30.936000000000003
- type: precision_at_10
value: 7.728
- type: precision_at_100
value: 1.226
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 17.237
- type: precision_at_5
value: 12.42
- type: recall_at_1
value: 24.94
- type: recall_at_10
value: 54.235
- type: recall_at_100
value: 78.314
- type: recall_at_1000
value: 93.973
- type: recall_at_3
value: 38.925
- type: recall_at_5
value: 45.505
- type: map_at_1
value: 26.250833333333333
- type: map_at_10
value: 35.46875
- type: map_at_100
value: 36.667
- type: map_at_1000
value: 36.78025
- type: map_at_3
value: 32.56733333333334
- type: map_at_5
value: 34.20333333333333
- type: mrr_at_1
value: 30.8945
- type: mrr_at_10
value: 39.636833333333335
- type: mrr_at_100
value: 40.46508333333333
- type: mrr_at_1000
value: 40.521249999999995
- type: mrr_at_3
value: 37.140166666666666
- type: mrr_at_5
value: 38.60999999999999
- type: ndcg_at_1
value: 30.8945
- type: ndcg_at_10
value: 40.93441666666667
- type: ndcg_at_100
value: 46.062416666666664
- type: ndcg_at_1000
value: 48.28341666666667
- type: ndcg_at_3
value: 35.97575
- type: ndcg_at_5
value: 38.3785
- type: precision_at_1
value: 30.8945
- type: precision_at_10
value: 7.180250000000001
- type: precision_at_100
value: 1.1468333333333334
- type: precision_at_1000
value: 0.15283333333333332
- type: precision_at_3
value: 16.525583333333334
- type: precision_at_5
value: 11.798333333333332
- type: recall_at_1
value: 26.250833333333333
- type: recall_at_10
value: 52.96108333333333
- type: recall_at_100
value: 75.45908333333334
- type: recall_at_1000
value: 90.73924999999998
- type: recall_at_3
value: 39.25483333333333
- type: recall_at_5
value: 45.37950000000001
- type: map_at_1
value: 24.595
- type: map_at_10
value: 31.747999999999998
- type: map_at_100
value: 32.62
- type: map_at_1000
value: 32.713
- type: map_at_3
value: 29.48
- type: map_at_5
value: 30.635
- type: mrr_at_1
value: 27.607
- type: mrr_at_10
value: 34.449000000000005
- type: mrr_at_100
value: 35.182
- type: mrr_at_1000
value: 35.254000000000005
- type: mrr_at_3
value: 32.413
- type: mrr_at_5
value: 33.372
- type: ndcg_at_1
value: 27.607
- type: ndcg_at_10
value: 36.041000000000004
- type: ndcg_at_100
value: 40.514
- type: ndcg_at_1000
value: 42.851
- type: ndcg_at_3
value: 31.689
- type: ndcg_at_5
value: 33.479
- type: precision_at_1
value: 27.607
- type: precision_at_10
value: 5.66
- type: precision_at_100
value: 0.868
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 13.446
- type: precision_at_5
value: 9.264
- type: recall_at_1
value: 24.595
- type: recall_at_10
value: 46.79
- type: recall_at_100
value: 67.413
- type: recall_at_1000
value: 84.753
- type: recall_at_3
value: 34.644999999999996
- type: recall_at_5
value: 39.09
- type: map_at_1
value: 17.333000000000002
- type: map_at_10
value: 24.427
- type: map_at_100
value: 25.576
- type: map_at_1000
value: 25.692999999999998
- type: map_at_3
value: 22.002
- type: map_at_5
value: 23.249
- type: mrr_at_1
value: 20.716
- type: mrr_at_10
value: 28.072000000000003
- type: mrr_at_100
value: 29.067
- type: mrr_at_1000
value: 29.137
- type: mrr_at_3
value: 25.832
- type: mrr_at_5
value: 27.045
- type: ndcg_at_1
value: 20.716
- type: ndcg_at_10
value: 29.109
- type: ndcg_at_100
value: 34.797
- type: ndcg_at_1000
value: 37.503
- type: ndcg_at_3
value: 24.668
- type: ndcg_at_5
value: 26.552999999999997
- type: precision_at_1
value: 20.716
- type: precision_at_10
value: 5.351
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 11.584999999999999
- type: precision_at_5
value: 8.362
- type: recall_at_1
value: 17.333000000000002
- type: recall_at_10
value: 39.604
- type: recall_at_100
value: 65.525
- type: recall_at_1000
value: 84.651
- type: recall_at_3
value: 27.199
- type: recall_at_5
value: 32.019
- type: map_at_1
value: 26.342
- type: map_at_10
value: 35.349000000000004
- type: map_at_100
value: 36.443
- type: map_at_1000
value: 36.548
- type: map_at_3
value: 32.307
- type: map_at_5
value: 34.164
- type: mrr_at_1
value: 31.063000000000002
- type: mrr_at_10
value: 39.703
- type: mrr_at_100
value: 40.555
- type: mrr_at_1000
value: 40.614
- type: mrr_at_3
value: 37.141999999999996
- type: mrr_at_5
value: 38.812000000000005
- type: ndcg_at_1
value: 31.063000000000002
- type: ndcg_at_10
value: 40.873
- type: ndcg_at_100
value: 45.896
- type: ndcg_at_1000
value: 48.205999999999996
- type: ndcg_at_3
value: 35.522
- type: ndcg_at_5
value: 38.419
- type: precision_at_1
value: 31.063000000000002
- type: precision_at_10
value: 6.866
- type: precision_at_100
value: 1.053
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 16.014
- type: precision_at_5
value: 11.604000000000001
- type: recall_at_1
value: 26.342
- type: recall_at_10
value: 53.40200000000001
- type: recall_at_100
value: 75.251
- type: recall_at_1000
value: 91.13799999999999
- type: recall_at_3
value: 39.103
- type: recall_at_5
value: 46.357
- type: map_at_1
value: 23.71
- type: map_at_10
value: 32.153999999999996
- type: map_at_100
value: 33.821
- type: map_at_1000
value: 34.034
- type: map_at_3
value: 29.376
- type: map_at_5
value: 30.878
- type: mrr_at_1
value: 28.458
- type: mrr_at_10
value: 36.775999999999996
- type: mrr_at_100
value: 37.804
- type: mrr_at_1000
value: 37.858999999999995
- type: mrr_at_3
value: 34.123999999999995
- type: mrr_at_5
value: 35.596
- type: ndcg_at_1
value: 28.458
- type: ndcg_at_10
value: 37.858999999999995
- type: ndcg_at_100
value: 44.194
- type: ndcg_at_1000
value: 46.744
- type: ndcg_at_3
value: 33.348
- type: ndcg_at_5
value: 35.448
- type: precision_at_1
value: 28.458
- type: precision_at_10
value: 7.4510000000000005
- type: precision_at_100
value: 1.5
- type: precision_at_1000
value: 0.23700000000000002
- type: precision_at_3
value: 15.809999999999999
- type: precision_at_5
value: 11.462
- type: recall_at_1
value: 23.71
- type: recall_at_10
value: 48.272999999999996
- type: recall_at_100
value: 77.134
- type: recall_at_1000
value: 93.001
- type: recall_at_3
value: 35.480000000000004
- type: recall_at_5
value: 41.19
- type: map_at_1
value: 21.331
- type: map_at_10
value: 28.926000000000002
- type: map_at_100
value: 29.855999999999998
- type: map_at_1000
value: 29.957
- type: map_at_3
value: 26.395999999999997
- type: map_at_5
value: 27.933000000000003
- type: mrr_at_1
value: 23.105
- type: mrr_at_10
value: 31.008000000000003
- type: mrr_at_100
value: 31.819999999999997
- type: mrr_at_1000
value: 31.887999999999998
- type: mrr_at_3
value: 28.466
- type: mrr_at_5
value: 30.203000000000003
- type: ndcg_at_1
value: 23.105
- type: ndcg_at_10
value: 33.635999999999996
- type: ndcg_at_100
value: 38.277
- type: ndcg_at_1000
value: 40.907
- type: ndcg_at_3
value: 28.791
- type: ndcg_at_5
value: 31.528
- type: precision_at_1
value: 23.105
- type: precision_at_10
value: 5.323
- type: precision_at_100
value: 0.815
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 12.384
- type: precision_at_5
value: 9.02
- type: recall_at_1
value: 21.331
- type: recall_at_10
value: 46.018
- type: recall_at_100
value: 67.364
- type: recall_at_1000
value: 86.97
- type: recall_at_3
value: 33.395
- type: recall_at_5
value: 39.931
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.011000000000003
- type: map_at_10
value: 28.816999999999997
- type: map_at_100
value: 30.761
- type: map_at_1000
value: 30.958000000000002
- type: map_at_3
value: 24.044999999999998
- type: map_at_5
value: 26.557
- type: mrr_at_1
value: 38.696999999999996
- type: mrr_at_10
value: 50.464
- type: mrr_at_100
value: 51.193999999999996
- type: mrr_at_1000
value: 51.219
- type: mrr_at_3
value: 47.339999999999996
- type: mrr_at_5
value: 49.346000000000004
- type: ndcg_at_1
value: 38.696999999999996
- type: ndcg_at_10
value: 38.53
- type: ndcg_at_100
value: 45.525
- type: ndcg_at_1000
value: 48.685
- type: ndcg_at_3
value: 32.282
- type: ndcg_at_5
value: 34.482
- type: precision_at_1
value: 38.696999999999996
- type: precision_at_10
value: 11.895999999999999
- type: precision_at_100
value: 1.95
- type: precision_at_1000
value: 0.254
- type: precision_at_3
value: 24.038999999999998
- type: precision_at_5
value: 18.332
- type: recall_at_1
value: 17.011000000000003
- type: recall_at_10
value: 44.452999999999996
- type: recall_at_100
value: 68.223
- type: recall_at_1000
value: 85.653
- type: recall_at_3
value: 28.784
- type: recall_at_5
value: 35.66
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.516
- type: map_at_10
value: 21.439
- type: map_at_100
value: 31.517
- type: map_at_1000
value: 33.267
- type: map_at_3
value: 15.004999999999999
- type: map_at_5
value: 17.793999999999997
- type: mrr_at_1
value: 71.25
- type: mrr_at_10
value: 79.071
- type: mrr_at_100
value: 79.325
- type: mrr_at_1000
value: 79.33
- type: mrr_at_3
value: 77.708
- type: mrr_at_5
value: 78.546
- type: ndcg_at_1
value: 58.62500000000001
- type: ndcg_at_10
value: 44.889
- type: ndcg_at_100
value: 50.536
- type: ndcg_at_1000
value: 57.724
- type: ndcg_at_3
value: 49.32
- type: ndcg_at_5
value: 46.775
- type: precision_at_1
value: 71.25
- type: precision_at_10
value: 36.175000000000004
- type: precision_at_100
value: 11.940000000000001
- type: precision_at_1000
value: 2.178
- type: precision_at_3
value: 53.583000000000006
- type: precision_at_5
value: 45.550000000000004
- type: recall_at_1
value: 9.516
- type: recall_at_10
value: 27.028000000000002
- type: recall_at_100
value: 57.581
- type: recall_at_1000
value: 80.623
- type: recall_at_3
value: 16.313
- type: recall_at_5
value: 20.674
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 51.74999999999999
- type: f1
value: 46.46706502669774
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 77.266
- type: map_at_10
value: 84.89999999999999
- type: map_at_100
value: 85.109
- type: map_at_1000
value: 85.123
- type: map_at_3
value: 83.898
- type: map_at_5
value: 84.541
- type: mrr_at_1
value: 83.138
- type: mrr_at_10
value: 89.37
- type: mrr_at_100
value: 89.432
- type: mrr_at_1000
value: 89.43299999999999
- type: mrr_at_3
value: 88.836
- type: mrr_at_5
value: 89.21
- type: ndcg_at_1
value: 83.138
- type: ndcg_at_10
value: 88.244
- type: ndcg_at_100
value: 88.98700000000001
- type: ndcg_at_1000
value: 89.21900000000001
- type: ndcg_at_3
value: 86.825
- type: ndcg_at_5
value: 87.636
- type: precision_at_1
value: 83.138
- type: precision_at_10
value: 10.47
- type: precision_at_100
value: 1.1079999999999999
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 32.933
- type: precision_at_5
value: 20.36
- type: recall_at_1
value: 77.266
- type: recall_at_10
value: 94.063
- type: recall_at_100
value: 96.993
- type: recall_at_1000
value: 98.414
- type: recall_at_3
value: 90.228
- type: recall_at_5
value: 92.328
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.319
- type: map_at_10
value: 36.943
- type: map_at_100
value: 38.951
- type: map_at_1000
value: 39.114
- type: map_at_3
value: 32.82
- type: map_at_5
value: 34.945
- type: mrr_at_1
value: 44.135999999999996
- type: mrr_at_10
value: 53.071999999999996
- type: mrr_at_100
value: 53.87
- type: mrr_at_1000
value: 53.90200000000001
- type: mrr_at_3
value: 50.77199999999999
- type: mrr_at_5
value: 52.129999999999995
- type: ndcg_at_1
value: 44.135999999999996
- type: ndcg_at_10
value: 44.836
- type: ndcg_at_100
value: 51.754
- type: ndcg_at_1000
value: 54.36
- type: ndcg_at_3
value: 41.658
- type: ndcg_at_5
value: 42.354
- type: precision_at_1
value: 44.135999999999996
- type: precision_at_10
value: 12.284
- type: precision_at_100
value: 1.952
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 27.828999999999997
- type: precision_at_5
value: 20.093
- type: recall_at_1
value: 22.319
- type: recall_at_10
value: 51.528
- type: recall_at_100
value: 76.70700000000001
- type: recall_at_1000
value: 92.143
- type: recall_at_3
value: 38.641
- type: recall_at_5
value: 43.653999999999996
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.182
- type: map_at_10
value: 65.146
- type: map_at_100
value: 66.023
- type: map_at_1000
value: 66.078
- type: map_at_3
value: 61.617999999999995
- type: map_at_5
value: 63.82299999999999
- type: mrr_at_1
value: 80.365
- type: mrr_at_10
value: 85.79
- type: mrr_at_100
value: 85.963
- type: mrr_at_1000
value: 85.968
- type: mrr_at_3
value: 84.952
- type: mrr_at_5
value: 85.503
- type: ndcg_at_1
value: 80.365
- type: ndcg_at_10
value: 73.13499999999999
- type: ndcg_at_100
value: 76.133
- type: ndcg_at_1000
value: 77.151
- type: ndcg_at_3
value: 68.255
- type: ndcg_at_5
value: 70.978
- type: precision_at_1
value: 80.365
- type: precision_at_10
value: 15.359
- type: precision_at_100
value: 1.7690000000000001
- type: precision_at_1000
value: 0.19
- type: precision_at_3
value: 44.024
- type: precision_at_5
value: 28.555999999999997
- type: recall_at_1
value: 40.182
- type: recall_at_10
value: 76.793
- type: recall_at_100
value: 88.474
- type: recall_at_1000
value: 95.159
- type: recall_at_3
value: 66.036
- type: recall_at_5
value: 71.391
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 92.7796
- type: ap
value: 89.24883716810874
- type: f1
value: 92.7706903433313
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.016
- type: map_at_10
value: 34.408
- type: map_at_100
value: 35.592
- type: map_at_1000
value: 35.64
- type: map_at_3
value: 30.459999999999997
- type: map_at_5
value: 32.721000000000004
- type: mrr_at_1
value: 22.593
- type: mrr_at_10
value: 34.993
- type: mrr_at_100
value: 36.113
- type: mrr_at_1000
value: 36.156
- type: mrr_at_3
value: 31.101
- type: mrr_at_5
value: 33.364
- type: ndcg_at_1
value: 22.579
- type: ndcg_at_10
value: 41.404999999999994
- type: ndcg_at_100
value: 47.018
- type: ndcg_at_1000
value: 48.211999999999996
- type: ndcg_at_3
value: 33.389
- type: ndcg_at_5
value: 37.425000000000004
- type: precision_at_1
value: 22.579
- type: precision_at_10
value: 6.59
- type: precision_at_100
value: 0.938
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.241000000000001
- type: precision_at_5
value: 10.59
- type: recall_at_1
value: 22.016
- type: recall_at_10
value: 62.927
- type: recall_at_100
value: 88.72
- type: recall_at_1000
value: 97.80799999999999
- type: recall_at_3
value: 41.229
- type: recall_at_5
value: 50.88
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.01732786137711
- type: f1
value: 93.76353126402202
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 76.91746466028272
- type: f1
value: 57.715651682646765
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 76.5030262273033
- type: f1
value: 74.6693629986121
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.74781439139207
- type: f1
value: 79.96684171018774
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.2156206892017
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.180539484816137
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.51125957874274
- type: mrr
value: 33.777037359249995
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.248
- type: map_at_10
value: 15.340000000000002
- type: map_at_100
value: 19.591
- type: map_at_1000
value: 21.187
- type: map_at_3
value: 11.329
- type: map_at_5
value: 13.209999999999999
- type: mrr_at_1
value: 47.678
- type: mrr_at_10
value: 57.493
- type: mrr_at_100
value: 58.038999999999994
- type: mrr_at_1000
value: 58.07
- type: mrr_at_3
value: 55.36600000000001
- type: mrr_at_5
value: 56.635999999999996
- type: ndcg_at_1
value: 46.129999999999995
- type: ndcg_at_10
value: 38.653999999999996
- type: ndcg_at_100
value: 36.288
- type: ndcg_at_1000
value: 44.765
- type: ndcg_at_3
value: 43.553
- type: ndcg_at_5
value: 41.317
- type: precision_at_1
value: 47.368
- type: precision_at_10
value: 28.669
- type: precision_at_100
value: 9.158
- type: precision_at_1000
value: 2.207
- type: precision_at_3
value: 40.97
- type: precision_at_5
value: 35.604
- type: recall_at_1
value: 7.248
- type: recall_at_10
value: 19.46
- type: recall_at_100
value: 37.214000000000006
- type: recall_at_1000
value: 67.64099999999999
- type: recall_at_3
value: 12.025
- type: recall_at_5
value: 15.443999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.595000000000002
- type: map_at_10
value: 47.815999999999995
- type: map_at_100
value: 48.811
- type: map_at_1000
value: 48.835
- type: map_at_3
value: 43.225
- type: map_at_5
value: 46.017
- type: mrr_at_1
value: 35.689
- type: mrr_at_10
value: 50.341
- type: mrr_at_100
value: 51.044999999999995
- type: mrr_at_1000
value: 51.062
- type: mrr_at_3
value: 46.553
- type: mrr_at_5
value: 48.918
- type: ndcg_at_1
value: 35.66
- type: ndcg_at_10
value: 55.859
- type: ndcg_at_100
value: 59.864
- type: ndcg_at_1000
value: 60.419999999999995
- type: ndcg_at_3
value: 47.371
- type: ndcg_at_5
value: 51.995000000000005
- type: precision_at_1
value: 35.66
- type: precision_at_10
value: 9.27
- type: precision_at_100
value: 1.1520000000000001
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 21.63
- type: precision_at_5
value: 15.655
- type: recall_at_1
value: 31.595000000000002
- type: recall_at_10
value: 77.704
- type: recall_at_100
value: 94.774
- type: recall_at_1000
value: 98.919
- type: recall_at_3
value: 56.052
- type: recall_at_5
value: 66.623
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.489
- type: map_at_10
value: 85.411
- type: map_at_100
value: 86.048
- type: map_at_1000
value: 86.064
- type: map_at_3
value: 82.587
- type: map_at_5
value: 84.339
- type: mrr_at_1
value: 82.28
- type: mrr_at_10
value: 88.27199999999999
- type: mrr_at_100
value: 88.362
- type: mrr_at_1000
value: 88.362
- type: mrr_at_3
value: 87.372
- type: mrr_at_5
value: 87.995
- type: ndcg_at_1
value: 82.27
- type: ndcg_at_10
value: 89.023
- type: ndcg_at_100
value: 90.191
- type: ndcg_at_1000
value: 90.266
- type: ndcg_at_3
value: 86.37
- type: ndcg_at_5
value: 87.804
- type: precision_at_1
value: 82.27
- type: precision_at_10
value: 13.469000000000001
- type: precision_at_100
value: 1.533
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.797
- type: precision_at_5
value: 24.734
- type: recall_at_1
value: 71.489
- type: recall_at_10
value: 95.824
- type: recall_at_100
value: 99.70599999999999
- type: recall_at_1000
value: 99.979
- type: recall_at_3
value: 88.099
- type: recall_at_5
value: 92.285
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 60.52398807444541
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 65.34855891507871
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.188000000000001
- type: map_at_10
value: 13.987
- type: map_at_100
value: 16.438
- type: map_at_1000
value: 16.829
- type: map_at_3
value: 9.767000000000001
- type: map_at_5
value: 11.912
- type: mrr_at_1
value: 25.6
- type: mrr_at_10
value: 37.744
- type: mrr_at_100
value: 38.847
- type: mrr_at_1000
value: 38.894
- type: mrr_at_3
value: 34.166999999999994
- type: mrr_at_5
value: 36.207
- type: ndcg_at_1
value: 25.6
- type: ndcg_at_10
value: 22.980999999999998
- type: ndcg_at_100
value: 32.039
- type: ndcg_at_1000
value: 38.157000000000004
- type: ndcg_at_3
value: 21.567
- type: ndcg_at_5
value: 19.070999999999998
- type: precision_at_1
value: 25.6
- type: precision_at_10
value: 12.02
- type: precision_at_100
value: 2.5100000000000002
- type: precision_at_1000
value: 0.396
- type: precision_at_3
value: 20.333000000000002
- type: precision_at_5
value: 16.98
- type: recall_at_1
value: 5.188000000000001
- type: recall_at_10
value: 24.372
- type: recall_at_100
value: 50.934999999999995
- type: recall_at_1000
value: 80.477
- type: recall_at_3
value: 12.363
- type: recall_at_5
value: 17.203
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 87.24286275535398
- type: cos_sim_spearman
value: 82.62333770991818
- type: euclidean_pearson
value: 84.60353717637284
- type: euclidean_spearman
value: 82.32990108810047
- type: manhattan_pearson
value: 84.6089049738196
- type: manhattan_spearman
value: 82.33361785438936
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 87.87428858503165
- type: cos_sim_spearman
value: 79.09145886519929
- type: euclidean_pearson
value: 86.42669231664036
- type: euclidean_spearman
value: 80.03127375435449
- type: manhattan_pearson
value: 86.41330338305022
- type: manhattan_spearman
value: 80.02492538673368
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 88.67912277322645
- type: cos_sim_spearman
value: 89.6171319711762
- type: euclidean_pearson
value: 86.56571917398725
- type: euclidean_spearman
value: 87.71216907898948
- type: manhattan_pearson
value: 86.57459050182473
- type: manhattan_spearman
value: 87.71916648349993
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 86.71957379085862
- type: cos_sim_spearman
value: 85.01784075851465
- type: euclidean_pearson
value: 84.7407848472801
- type: euclidean_spearman
value: 84.61063091345538
- type: manhattan_pearson
value: 84.71494352494403
- type: manhattan_spearman
value: 84.58772077604254
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.40508326325175
- type: cos_sim_spearman
value: 89.50912897763186
- type: euclidean_pearson
value: 87.82349070086627
- type: euclidean_spearman
value: 88.44179162727521
- type: manhattan_pearson
value: 87.80181927025595
- type: manhattan_spearman
value: 88.43205129636243
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.35846741715478
- type: cos_sim_spearman
value: 86.61172476741842
- type: euclidean_pearson
value: 84.60123125491637
- type: euclidean_spearman
value: 85.3001948141827
- type: manhattan_pearson
value: 84.56231142658329
- type: manhattan_spearman
value: 85.23579900798813
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.94539129818824
- type: cos_sim_spearman
value: 88.99349064256742
- type: euclidean_pearson
value: 88.7142444640351
- type: euclidean_spearman
value: 88.34120813505011
- type: manhattan_pearson
value: 88.70363008238084
- type: manhattan_spearman
value: 88.31952816956954
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 68.29910260369893
- type: cos_sim_spearman
value: 68.79263346213466
- type: euclidean_pearson
value: 68.41627521422252
- type: euclidean_spearman
value: 66.61602587398579
- type: manhattan_pearson
value: 68.49402183447361
- type: manhattan_spearman
value: 66.80157792354453
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.43703906343708
- type: cos_sim_spearman
value: 89.06081805093662
- type: euclidean_pearson
value: 87.48311456299662
- type: euclidean_spearman
value: 88.07417597580013
- type: manhattan_pearson
value: 87.48202249768894
- type: manhattan_spearman
value: 88.04758031111642
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.49080620485203
- type: mrr
value: 96.19145378949301
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.317
- type: map_at_10
value: 69.296
- type: map_at_100
value: 69.738
- type: map_at_1000
value: 69.759
- type: map_at_3
value: 66.12599999999999
- type: map_at_5
value: 67.532
- type: mrr_at_1
value: 62
- type: mrr_at_10
value: 70.176
- type: mrr_at_100
value: 70.565
- type: mrr_at_1000
value: 70.583
- type: mrr_at_3
value: 67.833
- type: mrr_at_5
value: 68.93299999999999
- type: ndcg_at_1
value: 62
- type: ndcg_at_10
value: 74.069
- type: ndcg_at_100
value: 76.037
- type: ndcg_at_1000
value: 76.467
- type: ndcg_at_3
value: 68.628
- type: ndcg_at_5
value: 70.57600000000001
- type: precision_at_1
value: 62
- type: precision_at_10
value: 10
- type: precision_at_100
value: 1.097
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.667
- type: precision_at_5
value: 17.4
- type: recall_at_1
value: 59.317
- type: recall_at_10
value: 87.822
- type: recall_at_100
value: 96.833
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 73.06099999999999
- type: recall_at_5
value: 77.928
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.88910891089108
- type: cos_sim_ap
value: 97.236958456951
- type: cos_sim_f1
value: 94.39999999999999
- type: cos_sim_precision
value: 94.39999999999999
- type: cos_sim_recall
value: 94.39999999999999
- type: dot_accuracy
value: 99.82574257425742
- type: dot_ap
value: 94.94344759441888
- type: dot_f1
value: 91.17352056168507
- type: dot_precision
value: 91.44869215291752
- type: dot_recall
value: 90.9
- type: euclidean_accuracy
value: 99.88415841584158
- type: euclidean_ap
value: 97.2044250782305
- type: euclidean_f1
value: 94.210786739238
- type: euclidean_precision
value: 93.24191968658178
- type: euclidean_recall
value: 95.19999999999999
- type: manhattan_accuracy
value: 99.88613861386139
- type: manhattan_ap
value: 97.20683205497689
- type: manhattan_f1
value: 94.2643391521197
- type: manhattan_precision
value: 94.02985074626866
- type: manhattan_recall
value: 94.5
- type: max_accuracy
value: 99.88910891089108
- type: max_ap
value: 97.236958456951
- type: max_f1
value: 94.39999999999999
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.53940781726187
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.71865011295108
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.3218674533331
- type: mrr
value: 56.28279910449028
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.723915667479673
- type: cos_sim_spearman
value: 32.029070449745234
- type: dot_pearson
value: 28.864944212481454
- type: dot_spearman
value: 27.939266999596725
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.231
- type: map_at_10
value: 1.949
- type: map_at_100
value: 10.023
- type: map_at_1000
value: 23.485
- type: map_at_3
value: 0.652
- type: map_at_5
value: 1.054
- type: mrr_at_1
value: 86
- type: mrr_at_10
value: 92.067
- type: mrr_at_100
value: 92.067
- type: mrr_at_1000
value: 92.067
- type: mrr_at_3
value: 91.667
- type: mrr_at_5
value: 92.067
- type: ndcg_at_1
value: 83
- type: ndcg_at_10
value: 76.32900000000001
- type: ndcg_at_100
value: 54.662
- type: ndcg_at_1000
value: 48.062
- type: ndcg_at_3
value: 81.827
- type: ndcg_at_5
value: 80.664
- type: precision_at_1
value: 86
- type: precision_at_10
value: 80
- type: precision_at_100
value: 55.48
- type: precision_at_1000
value: 20.938000000000002
- type: precision_at_3
value: 85.333
- type: precision_at_5
value: 84.39999999999999
- type: recall_at_1
value: 0.231
- type: recall_at_10
value: 2.158
- type: recall_at_100
value: 13.344000000000001
- type: recall_at_1000
value: 44.31
- type: recall_at_3
value: 0.6779999999999999
- type: recall_at_5
value: 1.13
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.524
- type: map_at_10
value: 10.183
- type: map_at_100
value: 16.625
- type: map_at_1000
value: 18.017
- type: map_at_3
value: 5.169
- type: map_at_5
value: 6.772
- type: mrr_at_1
value: 32.653
- type: mrr_at_10
value: 47.128
- type: mrr_at_100
value: 48.458
- type: mrr_at_1000
value: 48.473
- type: mrr_at_3
value: 44.897999999999996
- type: mrr_at_5
value: 45.306000000000004
- type: ndcg_at_1
value: 30.612000000000002
- type: ndcg_at_10
value: 24.928
- type: ndcg_at_100
value: 37.613
- type: ndcg_at_1000
value: 48.528
- type: ndcg_at_3
value: 28.829
- type: ndcg_at_5
value: 25.237
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 22.448999999999998
- type: precision_at_100
value: 8.02
- type: precision_at_1000
value: 1.537
- type: precision_at_3
value: 30.612000000000002
- type: precision_at_5
value: 24.490000000000002
- type: recall_at_1
value: 2.524
- type: recall_at_10
value: 16.38
- type: recall_at_100
value: 49.529
- type: recall_at_1000
value: 83.598
- type: recall_at_3
value: 6.411
- type: recall_at_5
value: 8.932
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.09020000000001
- type: ap
value: 14.451710060978993
- type: f1
value: 54.7874410609049
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.745331069609506
- type: f1
value: 60.08387848592697
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 51.71549485462037
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.39345532574357
- type: cos_sim_ap
value: 78.16796549696478
- type: cos_sim_f1
value: 71.27713276123171
- type: cos_sim_precision
value: 68.3115626511853
- type: cos_sim_recall
value: 74.51187335092348
- type: dot_accuracy
value: 85.12248912201228
- type: dot_ap
value: 69.26039256107077
- type: dot_f1
value: 65.04294321240867
- type: dot_precision
value: 63.251059586138126
- type: dot_recall
value: 66.93931398416886
- type: euclidean_accuracy
value: 87.07754664123503
- type: euclidean_ap
value: 77.7872176038945
- type: euclidean_f1
value: 70.85587801278899
- type: euclidean_precision
value: 66.3519115614924
- type: euclidean_recall
value: 76.01583113456465
- type: manhattan_accuracy
value: 87.07754664123503
- type: manhattan_ap
value: 77.7341400185556
- type: manhattan_f1
value: 70.80310880829015
- type: manhattan_precision
value: 69.54198473282443
- type: manhattan_recall
value: 72.1108179419525
- type: max_accuracy
value: 87.39345532574357
- type: max_ap
value: 78.16796549696478
- type: max_f1
value: 71.27713276123171
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.09457833663213
- type: cos_sim_ap
value: 86.33024314706873
- type: cos_sim_f1
value: 78.59623733719248
- type: cos_sim_precision
value: 74.13322413322413
- type: cos_sim_recall
value: 83.63104404065291
- type: dot_accuracy
value: 88.3086894089339
- type: dot_ap
value: 83.92225241805097
- type: dot_f1
value: 76.8721826377781
- type: dot_precision
value: 72.8168044077135
- type: dot_recall
value: 81.40591315060055
- type: euclidean_accuracy
value: 88.77052043311213
- type: euclidean_ap
value: 85.7410710218755
- type: euclidean_f1
value: 77.97705489398781
- type: euclidean_precision
value: 73.77713657598241
- type: euclidean_recall
value: 82.68401601478288
- type: manhattan_accuracy
value: 88.73753250281368
- type: manhattan_ap
value: 85.72867199072802
- type: manhattan_f1
value: 77.89774182922812
- type: manhattan_precision
value: 74.23787931635857
- type: manhattan_recall
value: 81.93717277486911
- type: max_accuracy
value: 89.09457833663213
- type: max_ap
value: 86.33024314706873
- type: max_f1
value: 78.59623733719248
---
# [Universal AnglE Embedding](https://github.com/SeanLee97/AnglE)
📢 `WhereIsAI/UAE-Large-V1` **is licensed under MIT. Feel free to use it in any scenario.**
**If you use it for academic papers, you could cite us via 👉 [citation info](#citation).**
**🤝 Follow us on:**
- GitHub: https://github.com/SeanLee97/AnglE.
- Preprint Paper: [AnglE-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)
- Conference Paper: [AoE: Angle-optimized Embeddings for Semantic Textual Similarity](https://aclanthology.org/2024.acl-long.101/) (ACL24)
- **📘 Documentation**: https://angle.readthedocs.io/en/latest/index.html
Welcome to using AnglE to train and infer powerful sentence embeddings.
**🏆 Achievements**
- 📅 May 16, 2024 | AnglE's paper is accepted by ACL 2024 Main Conference
- 📅 Dec 4, 2024 | 🔥 Our universal English sentence embedding `WhereIsAI/UAE-Large-V1` achieves **SOTA** on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of 64.64!

**🧑🤝🧑 Siblings:**
- [WhereIsAI/UAE-Code-Large-V1](https://huggingface.co/WhereIsAI/UAE-Code-Large-V1): This model can be used for code or GitHub issue similarity measurement.
# Usage
## 1. angle_emb
```bash
python -m pip install -U angle-emb
```
1) Non-Retrieval Tasks
There is no need to specify any prompts.
```python
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
], normalize_embedding=True)
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
```
2) Retrieval Tasks
For retrieval purposes, please use the prompt `Prompts.C` for query (not for document).
```python
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
qv = angle.encode(Prompts.C.format(text='what is the weather?'))
doc_vecs = angle.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
])
for dv in doc_vecs:
print(cosine_similarity(qv[0], dv))
```
## 2. sentence transformer
```python
from angle_emb import Prompts
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("WhereIsAI/UAE-Large-V1").cuda()
qv = model.encode(Prompts.C.format(text='what is the weather?'))
doc_vecs = model.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
])
for dv in doc_vecs:
print(1 - spatial.distance.cosine(qv, dv))
```
## 3. Infinity
[Infinity](https://github.com/michaelfeil/infinity) is a MIT licensed server for OpenAI-compatible deployment.
```
docker run --gpus all -v $PWD/data:/app/.cache -p "7997":"7997" \
michaelf34/infinity:latest \
v2 --model-id WhereIsAI/UAE-Large-V1 --revision "369c368f70f16a613f19f5598d4f12d9f44235d4" --dtype float16 --batch-size 32 --device cuda --engine torch --port 7997
```
# Citation
If you use our pre-trained models, welcome to support us by citing our work:
```
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
``` | [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
thenlper/gte-small | thenlper | sentence-similarity | [
"sentence-transformers",
"pytorch",
"tf",
"coreml",
"onnx",
"safetensors",
"openvino",
"bert",
"mteb",
"sentence-similarity",
"Sentence Transformers",
"en",
"arxiv:2308.03281",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | 2023-07-27T10:14:55 | 2024-11-16T08:17:33 | 3,841,887 | 152 | ---
language:
- en
license: mit
tags:
- mteb
- sentence-similarity
- sentence-transformers
- Sentence Transformers
model-index:
- name: gte-small
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.22388059701493
- type: ap
value: 36.09895941426988
- type: f1
value: 67.3205651539195
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.81894999999999
- type: ap
value: 88.5240138417305
- type: f1
value: 91.80367382706962
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.032
- type: f1
value: 47.4490665674719
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.725
- type: map_at_10
value: 46.604
- type: map_at_100
value: 47.535
- type: map_at_1000
value: 47.538000000000004
- type: map_at_3
value: 41.833
- type: map_at_5
value: 44.61
- type: mrr_at_1
value: 31.223
- type: mrr_at_10
value: 46.794000000000004
- type: mrr_at_100
value: 47.725
- type: mrr_at_1000
value: 47.727000000000004
- type: mrr_at_3
value: 42.07
- type: mrr_at_5
value: 44.812000000000005
- type: ndcg_at_1
value: 30.725
- type: ndcg_at_10
value: 55.440999999999995
- type: ndcg_at_100
value: 59.134
- type: ndcg_at_1000
value: 59.199
- type: ndcg_at_3
value: 45.599000000000004
- type: ndcg_at_5
value: 50.637
- type: precision_at_1
value: 30.725
- type: precision_at_10
value: 8.364
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.848000000000003
- type: precision_at_5
value: 13.77
- type: recall_at_1
value: 30.725
- type: recall_at_10
value: 83.64200000000001
- type: recall_at_100
value: 99.14699999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 56.543
- type: recall_at_5
value: 68.848
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 47.90178078197678
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.25728393431922
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.720297062897764
- type: mrr
value: 75.24139295607439
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.43527309184616
- type: cos_sim_spearman
value: 88.17128615100206
- type: euclidean_pearson
value: 87.89922623089282
- type: euclidean_spearman
value: 87.96104039655451
- type: manhattan_pearson
value: 87.9818290932077
- type: manhattan_spearman
value: 88.00923426576885
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.0844155844156
- type: f1
value: 84.01485017302213
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.36574769259432
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 35.4857033165287
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.261
- type: map_at_10
value: 42.419000000000004
- type: map_at_100
value: 43.927
- type: map_at_1000
value: 44.055
- type: map_at_3
value: 38.597
- type: map_at_5
value: 40.701
- type: mrr_at_1
value: 36.91
- type: mrr_at_10
value: 48.02
- type: mrr_at_100
value: 48.658
- type: mrr_at_1000
value: 48.708
- type: mrr_at_3
value: 44.945
- type: mrr_at_5
value: 46.705000000000005
- type: ndcg_at_1
value: 36.91
- type: ndcg_at_10
value: 49.353
- type: ndcg_at_100
value: 54.456
- type: ndcg_at_1000
value: 56.363
- type: ndcg_at_3
value: 43.483
- type: ndcg_at_5
value: 46.150999999999996
- type: precision_at_1
value: 36.91
- type: precision_at_10
value: 9.700000000000001
- type: precision_at_100
value: 1.557
- type: precision_at_1000
value: 0.202
- type: precision_at_3
value: 21.078
- type: precision_at_5
value: 15.421999999999999
- type: recall_at_1
value: 30.261
- type: recall_at_10
value: 63.242
- type: recall_at_100
value: 84.09100000000001
- type: recall_at_1000
value: 96.143
- type: recall_at_3
value: 46.478
- type: recall_at_5
value: 53.708
- type: map_at_1
value: 31.145
- type: map_at_10
value: 40.996
- type: map_at_100
value: 42.266999999999996
- type: map_at_1000
value: 42.397
- type: map_at_3
value: 38.005
- type: map_at_5
value: 39.628
- type: mrr_at_1
value: 38.344
- type: mrr_at_10
value: 46.827000000000005
- type: mrr_at_100
value: 47.446
- type: mrr_at_1000
value: 47.489
- type: mrr_at_3
value: 44.448
- type: mrr_at_5
value: 45.747
- type: ndcg_at_1
value: 38.344
- type: ndcg_at_10
value: 46.733000000000004
- type: ndcg_at_100
value: 51.103
- type: ndcg_at_1000
value: 53.075
- type: ndcg_at_3
value: 42.366
- type: ndcg_at_5
value: 44.242
- type: precision_at_1
value: 38.344
- type: precision_at_10
value: 8.822000000000001
- type: precision_at_100
value: 1.417
- type: precision_at_1000
value: 0.187
- type: precision_at_3
value: 20.403
- type: precision_at_5
value: 14.306
- type: recall_at_1
value: 31.145
- type: recall_at_10
value: 56.909
- type: recall_at_100
value: 75.274
- type: recall_at_1000
value: 87.629
- type: recall_at_3
value: 43.784
- type: recall_at_5
value: 49.338
- type: map_at_1
value: 38.83
- type: map_at_10
value: 51.553000000000004
- type: map_at_100
value: 52.581
- type: map_at_1000
value: 52.638
- type: map_at_3
value: 48.112
- type: map_at_5
value: 50.095
- type: mrr_at_1
value: 44.513999999999996
- type: mrr_at_10
value: 54.998000000000005
- type: mrr_at_100
value: 55.650999999999996
- type: mrr_at_1000
value: 55.679
- type: mrr_at_3
value: 52.602000000000004
- type: mrr_at_5
value: 53.931
- type: ndcg_at_1
value: 44.513999999999996
- type: ndcg_at_10
value: 57.67400000000001
- type: ndcg_at_100
value: 61.663999999999994
- type: ndcg_at_1000
value: 62.743
- type: ndcg_at_3
value: 51.964
- type: ndcg_at_5
value: 54.773
- type: precision_at_1
value: 44.513999999999996
- type: precision_at_10
value: 9.423
- type: precision_at_100
value: 1.2309999999999999
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 23.323
- type: precision_at_5
value: 16.163
- type: recall_at_1
value: 38.83
- type: recall_at_10
value: 72.327
- type: recall_at_100
value: 89.519
- type: recall_at_1000
value: 97.041
- type: recall_at_3
value: 57.206
- type: recall_at_5
value: 63.88399999999999
- type: map_at_1
value: 25.484
- type: map_at_10
value: 34.527
- type: map_at_100
value: 35.661
- type: map_at_1000
value: 35.739
- type: map_at_3
value: 32.199
- type: map_at_5
value: 33.632
- type: mrr_at_1
value: 27.458
- type: mrr_at_10
value: 36.543
- type: mrr_at_100
value: 37.482
- type: mrr_at_1000
value: 37.543
- type: mrr_at_3
value: 34.256
- type: mrr_at_5
value: 35.618
- type: ndcg_at_1
value: 27.458
- type: ndcg_at_10
value: 39.396
- type: ndcg_at_100
value: 44.742
- type: ndcg_at_1000
value: 46.708
- type: ndcg_at_3
value: 34.817
- type: ndcg_at_5
value: 37.247
- type: precision_at_1
value: 27.458
- type: precision_at_10
value: 5.976999999999999
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 14.878
- type: precision_at_5
value: 10.35
- type: recall_at_1
value: 25.484
- type: recall_at_10
value: 52.317
- type: recall_at_100
value: 76.701
- type: recall_at_1000
value: 91.408
- type: recall_at_3
value: 40.043
- type: recall_at_5
value: 45.879
- type: map_at_1
value: 16.719
- type: map_at_10
value: 25.269000000000002
- type: map_at_100
value: 26.442
- type: map_at_1000
value: 26.557
- type: map_at_3
value: 22.56
- type: map_at_5
value: 24.082
- type: mrr_at_1
value: 20.896
- type: mrr_at_10
value: 29.982999999999997
- type: mrr_at_100
value: 30.895
- type: mrr_at_1000
value: 30.961
- type: mrr_at_3
value: 27.239
- type: mrr_at_5
value: 28.787000000000003
- type: ndcg_at_1
value: 20.896
- type: ndcg_at_10
value: 30.814000000000004
- type: ndcg_at_100
value: 36.418
- type: ndcg_at_1000
value: 39.182
- type: ndcg_at_3
value: 25.807999999999996
- type: ndcg_at_5
value: 28.143
- type: precision_at_1
value: 20.896
- type: precision_at_10
value: 5.821
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 12.562000000000001
- type: precision_at_5
value: 9.254
- type: recall_at_1
value: 16.719
- type: recall_at_10
value: 43.155
- type: recall_at_100
value: 67.831
- type: recall_at_1000
value: 87.617
- type: recall_at_3
value: 29.259
- type: recall_at_5
value: 35.260999999999996
- type: map_at_1
value: 29.398999999999997
- type: map_at_10
value: 39.876
- type: map_at_100
value: 41.205999999999996
- type: map_at_1000
value: 41.321999999999996
- type: map_at_3
value: 36.588
- type: map_at_5
value: 38.538
- type: mrr_at_1
value: 35.9
- type: mrr_at_10
value: 45.528
- type: mrr_at_100
value: 46.343
- type: mrr_at_1000
value: 46.388
- type: mrr_at_3
value: 42.862
- type: mrr_at_5
value: 44.440000000000005
- type: ndcg_at_1
value: 35.9
- type: ndcg_at_10
value: 45.987
- type: ndcg_at_100
value: 51.370000000000005
- type: ndcg_at_1000
value: 53.400000000000006
- type: ndcg_at_3
value: 40.841
- type: ndcg_at_5
value: 43.447
- type: precision_at_1
value: 35.9
- type: precision_at_10
value: 8.393
- type: precision_at_100
value: 1.283
- type: precision_at_1000
value: 0.166
- type: precision_at_3
value: 19.538
- type: precision_at_5
value: 13.975000000000001
- type: recall_at_1
value: 29.398999999999997
- type: recall_at_10
value: 58.361
- type: recall_at_100
value: 81.081
- type: recall_at_1000
value: 94.004
- type: recall_at_3
value: 43.657000000000004
- type: recall_at_5
value: 50.519999999999996
- type: map_at_1
value: 21.589
- type: map_at_10
value: 31.608999999999998
- type: map_at_100
value: 33.128
- type: map_at_1000
value: 33.247
- type: map_at_3
value: 28.671999999999997
- type: map_at_5
value: 30.233999999999998
- type: mrr_at_1
value: 26.712000000000003
- type: mrr_at_10
value: 36.713
- type: mrr_at_100
value: 37.713
- type: mrr_at_1000
value: 37.771
- type: mrr_at_3
value: 34.075
- type: mrr_at_5
value: 35.451
- type: ndcg_at_1
value: 26.712000000000003
- type: ndcg_at_10
value: 37.519999999999996
- type: ndcg_at_100
value: 43.946000000000005
- type: ndcg_at_1000
value: 46.297
- type: ndcg_at_3
value: 32.551
- type: ndcg_at_5
value: 34.660999999999994
- type: precision_at_1
value: 26.712000000000003
- type: precision_at_10
value: 7.066
- type: precision_at_100
value: 1.216
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 15.906
- type: precision_at_5
value: 11.437999999999999
- type: recall_at_1
value: 21.589
- type: recall_at_10
value: 50.090999999999994
- type: recall_at_100
value: 77.43900000000001
- type: recall_at_1000
value: 93.35900000000001
- type: recall_at_3
value: 36.028999999999996
- type: recall_at_5
value: 41.698
- type: map_at_1
value: 25.121666666666663
- type: map_at_10
value: 34.46258333333334
- type: map_at_100
value: 35.710499999999996
- type: map_at_1000
value: 35.82691666666666
- type: map_at_3
value: 31.563249999999996
- type: map_at_5
value: 33.189750000000004
- type: mrr_at_1
value: 29.66441666666667
- type: mrr_at_10
value: 38.5455
- type: mrr_at_100
value: 39.39566666666667
- type: mrr_at_1000
value: 39.45325
- type: mrr_at_3
value: 36.003333333333345
- type: mrr_at_5
value: 37.440916666666666
- type: ndcg_at_1
value: 29.66441666666667
- type: ndcg_at_10
value: 39.978416666666675
- type: ndcg_at_100
value: 45.278666666666666
- type: ndcg_at_1000
value: 47.52275
- type: ndcg_at_3
value: 35.00058333333334
- type: ndcg_at_5
value: 37.34908333333333
- type: precision_at_1
value: 29.66441666666667
- type: precision_at_10
value: 7.094500000000001
- type: precision_at_100
value: 1.1523333333333332
- type: precision_at_1000
value: 0.15358333333333332
- type: precision_at_3
value: 16.184166666666663
- type: precision_at_5
value: 11.6005
- type: recall_at_1
value: 25.121666666666663
- type: recall_at_10
value: 52.23975000000001
- type: recall_at_100
value: 75.48408333333333
- type: recall_at_1000
value: 90.95316666666668
- type: recall_at_3
value: 38.38458333333333
- type: recall_at_5
value: 44.39933333333333
- type: map_at_1
value: 23.569000000000003
- type: map_at_10
value: 30.389
- type: map_at_100
value: 31.396
- type: map_at_1000
value: 31.493
- type: map_at_3
value: 28.276
- type: map_at_5
value: 29.459000000000003
- type: mrr_at_1
value: 26.534000000000002
- type: mrr_at_10
value: 33.217999999999996
- type: mrr_at_100
value: 34.054
- type: mrr_at_1000
value: 34.12
- type: mrr_at_3
value: 31.058000000000003
- type: mrr_at_5
value: 32.330999999999996
- type: ndcg_at_1
value: 26.534000000000002
- type: ndcg_at_10
value: 34.608
- type: ndcg_at_100
value: 39.391999999999996
- type: ndcg_at_1000
value: 41.837999999999994
- type: ndcg_at_3
value: 30.564999999999998
- type: ndcg_at_5
value: 32.509
- type: precision_at_1
value: 26.534000000000002
- type: precision_at_10
value: 5.414
- type: precision_at_100
value: 0.847
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 12.986
- type: precision_at_5
value: 9.202
- type: recall_at_1
value: 23.569000000000003
- type: recall_at_10
value: 44.896
- type: recall_at_100
value: 66.476
- type: recall_at_1000
value: 84.548
- type: recall_at_3
value: 33.79
- type: recall_at_5
value: 38.512
- type: map_at_1
value: 16.36
- type: map_at_10
value: 23.57
- type: map_at_100
value: 24.698999999999998
- type: map_at_1000
value: 24.834999999999997
- type: map_at_3
value: 21.093
- type: map_at_5
value: 22.418
- type: mrr_at_1
value: 19.718
- type: mrr_at_10
value: 27.139999999999997
- type: mrr_at_100
value: 28.097
- type: mrr_at_1000
value: 28.177999999999997
- type: mrr_at_3
value: 24.805
- type: mrr_at_5
value: 26.121
- type: ndcg_at_1
value: 19.718
- type: ndcg_at_10
value: 28.238999999999997
- type: ndcg_at_100
value: 33.663
- type: ndcg_at_1000
value: 36.763
- type: ndcg_at_3
value: 23.747
- type: ndcg_at_5
value: 25.796000000000003
- type: precision_at_1
value: 19.718
- type: precision_at_10
value: 5.282
- type: precision_at_100
value: 0.9390000000000001
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 11.264000000000001
- type: precision_at_5
value: 8.341
- type: recall_at_1
value: 16.36
- type: recall_at_10
value: 38.669
- type: recall_at_100
value: 63.184
- type: recall_at_1000
value: 85.33800000000001
- type: recall_at_3
value: 26.214
- type: recall_at_5
value: 31.423000000000002
- type: map_at_1
value: 25.618999999999996
- type: map_at_10
value: 34.361999999999995
- type: map_at_100
value: 35.534
- type: map_at_1000
value: 35.634
- type: map_at_3
value: 31.402
- type: map_at_5
value: 32.815
- type: mrr_at_1
value: 30.037000000000003
- type: mrr_at_10
value: 38.284
- type: mrr_at_100
value: 39.141999999999996
- type: mrr_at_1000
value: 39.2
- type: mrr_at_3
value: 35.603
- type: mrr_at_5
value: 36.867
- type: ndcg_at_1
value: 30.037000000000003
- type: ndcg_at_10
value: 39.87
- type: ndcg_at_100
value: 45.243
- type: ndcg_at_1000
value: 47.507
- type: ndcg_at_3
value: 34.371
- type: ndcg_at_5
value: 36.521
- type: precision_at_1
value: 30.037000000000003
- type: precision_at_10
value: 6.819
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 15.392
- type: precision_at_5
value: 10.821
- type: recall_at_1
value: 25.618999999999996
- type: recall_at_10
value: 52.869
- type: recall_at_100
value: 76.395
- type: recall_at_1000
value: 92.19500000000001
- type: recall_at_3
value: 37.943
- type: recall_at_5
value: 43.342999999999996
- type: map_at_1
value: 23.283
- type: map_at_10
value: 32.155
- type: map_at_100
value: 33.724
- type: map_at_1000
value: 33.939
- type: map_at_3
value: 29.018
- type: map_at_5
value: 30.864000000000004
- type: mrr_at_1
value: 28.063
- type: mrr_at_10
value: 36.632
- type: mrr_at_100
value: 37.606
- type: mrr_at_1000
value: 37.671
- type: mrr_at_3
value: 33.992
- type: mrr_at_5
value: 35.613
- type: ndcg_at_1
value: 28.063
- type: ndcg_at_10
value: 38.024
- type: ndcg_at_100
value: 44.292
- type: ndcg_at_1000
value: 46.818
- type: ndcg_at_3
value: 32.965
- type: ndcg_at_5
value: 35.562
- type: precision_at_1
value: 28.063
- type: precision_at_10
value: 7.352
- type: precision_at_100
value: 1.514
- type: precision_at_1000
value: 0.23800000000000002
- type: precision_at_3
value: 15.481
- type: precision_at_5
value: 11.542
- type: recall_at_1
value: 23.283
- type: recall_at_10
value: 49.756
- type: recall_at_100
value: 78.05
- type: recall_at_1000
value: 93.854
- type: recall_at_3
value: 35.408
- type: recall_at_5
value: 42.187000000000005
- type: map_at_1
value: 19.201999999999998
- type: map_at_10
value: 26.826
- type: map_at_100
value: 27.961000000000002
- type: map_at_1000
value: 28.066999999999997
- type: map_at_3
value: 24.237000000000002
- type: map_at_5
value: 25.811
- type: mrr_at_1
value: 20.887
- type: mrr_at_10
value: 28.660000000000004
- type: mrr_at_100
value: 29.660999999999998
- type: mrr_at_1000
value: 29.731
- type: mrr_at_3
value: 26.155
- type: mrr_at_5
value: 27.68
- type: ndcg_at_1
value: 20.887
- type: ndcg_at_10
value: 31.523
- type: ndcg_at_100
value: 37.055
- type: ndcg_at_1000
value: 39.579
- type: ndcg_at_3
value: 26.529000000000003
- type: ndcg_at_5
value: 29.137
- type: precision_at_1
value: 20.887
- type: precision_at_10
value: 5.065
- type: precision_at_100
value: 0.856
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 11.399
- type: precision_at_5
value: 8.392
- type: recall_at_1
value: 19.201999999999998
- type: recall_at_10
value: 44.285000000000004
- type: recall_at_100
value: 69.768
- type: recall_at_1000
value: 88.302
- type: recall_at_3
value: 30.804
- type: recall_at_5
value: 37.039
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.244
- type: map_at_10
value: 18.956
- type: map_at_100
value: 20.674
- type: map_at_1000
value: 20.863
- type: map_at_3
value: 15.923000000000002
- type: map_at_5
value: 17.518
- type: mrr_at_1
value: 25.080999999999996
- type: mrr_at_10
value: 35.94
- type: mrr_at_100
value: 36.969
- type: mrr_at_1000
value: 37.013
- type: mrr_at_3
value: 32.617000000000004
- type: mrr_at_5
value: 34.682
- type: ndcg_at_1
value: 25.080999999999996
- type: ndcg_at_10
value: 26.539
- type: ndcg_at_100
value: 33.601
- type: ndcg_at_1000
value: 37.203
- type: ndcg_at_3
value: 21.695999999999998
- type: ndcg_at_5
value: 23.567
- type: precision_at_1
value: 25.080999999999996
- type: precision_at_10
value: 8.143
- type: precision_at_100
value: 1.5650000000000002
- type: precision_at_1000
value: 0.22300000000000003
- type: precision_at_3
value: 15.983
- type: precision_at_5
value: 12.417
- type: recall_at_1
value: 11.244
- type: recall_at_10
value: 31.457
- type: recall_at_100
value: 55.92
- type: recall_at_1000
value: 76.372
- type: recall_at_3
value: 19.784
- type: recall_at_5
value: 24.857000000000003
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.595
- type: map_at_10
value: 18.75
- type: map_at_100
value: 26.354
- type: map_at_1000
value: 27.912
- type: map_at_3
value: 13.794
- type: map_at_5
value: 16.021
- type: mrr_at_1
value: 65.75
- type: mrr_at_10
value: 73.837
- type: mrr_at_100
value: 74.22800000000001
- type: mrr_at_1000
value: 74.234
- type: mrr_at_3
value: 72.5
- type: mrr_at_5
value: 73.387
- type: ndcg_at_1
value: 52.625
- type: ndcg_at_10
value: 39.101
- type: ndcg_at_100
value: 43.836000000000006
- type: ndcg_at_1000
value: 51.086
- type: ndcg_at_3
value: 44.229
- type: ndcg_at_5
value: 41.555
- type: precision_at_1
value: 65.75
- type: precision_at_10
value: 30.45
- type: precision_at_100
value: 9.81
- type: precision_at_1000
value: 2.045
- type: precision_at_3
value: 48.667
- type: precision_at_5
value: 40.8
- type: recall_at_1
value: 8.595
- type: recall_at_10
value: 24.201
- type: recall_at_100
value: 50.096
- type: recall_at_1000
value: 72.677
- type: recall_at_3
value: 15.212
- type: recall_at_5
value: 18.745
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.565
- type: f1
value: 41.49914329345582
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 66.60000000000001
- type: map_at_10
value: 76.838
- type: map_at_100
value: 77.076
- type: map_at_1000
value: 77.09
- type: map_at_3
value: 75.545
- type: map_at_5
value: 76.39
- type: mrr_at_1
value: 71.707
- type: mrr_at_10
value: 81.514
- type: mrr_at_100
value: 81.64099999999999
- type: mrr_at_1000
value: 81.645
- type: mrr_at_3
value: 80.428
- type: mrr_at_5
value: 81.159
- type: ndcg_at_1
value: 71.707
- type: ndcg_at_10
value: 81.545
- type: ndcg_at_100
value: 82.477
- type: ndcg_at_1000
value: 82.73899999999999
- type: ndcg_at_3
value: 79.292
- type: ndcg_at_5
value: 80.599
- type: precision_at_1
value: 71.707
- type: precision_at_10
value: 10.035
- type: precision_at_100
value: 1.068
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 30.918
- type: precision_at_5
value: 19.328
- type: recall_at_1
value: 66.60000000000001
- type: recall_at_10
value: 91.353
- type: recall_at_100
value: 95.21
- type: recall_at_1000
value: 96.89999999999999
- type: recall_at_3
value: 85.188
- type: recall_at_5
value: 88.52
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.338
- type: map_at_10
value: 31.752000000000002
- type: map_at_100
value: 33.516
- type: map_at_1000
value: 33.694
- type: map_at_3
value: 27.716
- type: map_at_5
value: 29.67
- type: mrr_at_1
value: 38.117000000000004
- type: mrr_at_10
value: 47.323
- type: mrr_at_100
value: 48.13
- type: mrr_at_1000
value: 48.161
- type: mrr_at_3
value: 45.062000000000005
- type: mrr_at_5
value: 46.358
- type: ndcg_at_1
value: 38.117000000000004
- type: ndcg_at_10
value: 39.353
- type: ndcg_at_100
value: 46.044000000000004
- type: ndcg_at_1000
value: 49.083
- type: ndcg_at_3
value: 35.891
- type: ndcg_at_5
value: 36.661
- type: precision_at_1
value: 38.117000000000004
- type: precision_at_10
value: 11.187999999999999
- type: precision_at_100
value: 1.802
- type: precision_at_1000
value: 0.234
- type: precision_at_3
value: 24.126
- type: precision_at_5
value: 17.562
- type: recall_at_1
value: 19.338
- type: recall_at_10
value: 45.735
- type: recall_at_100
value: 71.281
- type: recall_at_1000
value: 89.537
- type: recall_at_3
value: 32.525
- type: recall_at_5
value: 37.671
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 36.995
- type: map_at_10
value: 55.032000000000004
- type: map_at_100
value: 55.86
- type: map_at_1000
value: 55.932
- type: map_at_3
value: 52.125
- type: map_at_5
value: 53.884
- type: mrr_at_1
value: 73.991
- type: mrr_at_10
value: 80.096
- type: mrr_at_100
value: 80.32000000000001
- type: mrr_at_1000
value: 80.331
- type: mrr_at_3
value: 79.037
- type: mrr_at_5
value: 79.719
- type: ndcg_at_1
value: 73.991
- type: ndcg_at_10
value: 63.786
- type: ndcg_at_100
value: 66.78
- type: ndcg_at_1000
value: 68.255
- type: ndcg_at_3
value: 59.501000000000005
- type: ndcg_at_5
value: 61.82299999999999
- type: precision_at_1
value: 73.991
- type: precision_at_10
value: 13.157
- type: precision_at_100
value: 1.552
- type: precision_at_1000
value: 0.17500000000000002
- type: precision_at_3
value: 37.519999999999996
- type: precision_at_5
value: 24.351
- type: recall_at_1
value: 36.995
- type: recall_at_10
value: 65.78699999999999
- type: recall_at_100
value: 77.583
- type: recall_at_1000
value: 87.421
- type: recall_at_3
value: 56.279999999999994
- type: recall_at_5
value: 60.878
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 86.80239999999999
- type: ap
value: 81.97305141128378
- type: f1
value: 86.76976305549273
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.166
- type: map_at_10
value: 33.396
- type: map_at_100
value: 34.588
- type: map_at_1000
value: 34.637
- type: map_at_3
value: 29.509999999999998
- type: map_at_5
value: 31.719
- type: mrr_at_1
value: 21.762
- type: mrr_at_10
value: 33.969
- type: mrr_at_100
value: 35.099000000000004
- type: mrr_at_1000
value: 35.141
- type: mrr_at_3
value: 30.148000000000003
- type: mrr_at_5
value: 32.324000000000005
- type: ndcg_at_1
value: 21.776999999999997
- type: ndcg_at_10
value: 40.306999999999995
- type: ndcg_at_100
value: 46.068
- type: ndcg_at_1000
value: 47.3
- type: ndcg_at_3
value: 32.416
- type: ndcg_at_5
value: 36.345
- type: precision_at_1
value: 21.776999999999997
- type: precision_at_10
value: 6.433
- type: precision_at_100
value: 0.932
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.897
- type: precision_at_5
value: 10.324
- type: recall_at_1
value: 21.166
- type: recall_at_10
value: 61.587
- type: recall_at_100
value: 88.251
- type: recall_at_1000
value: 97.727
- type: recall_at_3
value: 40.196
- type: recall_at_5
value: 49.611
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.04605563155496
- type: f1
value: 92.78007303978372
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 69.65116279069767
- type: f1
value: 52.75775172527262
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.34633490248822
- type: f1
value: 68.15345065392562
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.63887020847343
- type: f1
value: 76.08074680233685
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.77933406071333
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.06504927238196
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.20682480490871
- type: mrr
value: 33.41462721527003
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.548
- type: map_at_10
value: 13.086999999999998
- type: map_at_100
value: 16.698
- type: map_at_1000
value: 18.151999999999997
- type: map_at_3
value: 9.576
- type: map_at_5
value: 11.175
- type: mrr_at_1
value: 44.272
- type: mrr_at_10
value: 53.635999999999996
- type: mrr_at_100
value: 54.228
- type: mrr_at_1000
value: 54.26499999999999
- type: mrr_at_3
value: 51.754
- type: mrr_at_5
value: 53.086
- type: ndcg_at_1
value: 42.724000000000004
- type: ndcg_at_10
value: 34.769
- type: ndcg_at_100
value: 32.283
- type: ndcg_at_1000
value: 40.843
- type: ndcg_at_3
value: 39.852
- type: ndcg_at_5
value: 37.858999999999995
- type: precision_at_1
value: 44.272
- type: precision_at_10
value: 26.068
- type: precision_at_100
value: 8.328000000000001
- type: precision_at_1000
value: 2.1
- type: precision_at_3
value: 37.874
- type: precision_at_5
value: 33.065
- type: recall_at_1
value: 5.548
- type: recall_at_10
value: 16.936999999999998
- type: recall_at_100
value: 33.72
- type: recall_at_1000
value: 64.348
- type: recall_at_3
value: 10.764999999999999
- type: recall_at_5
value: 13.361
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.008
- type: map_at_10
value: 42.675000000000004
- type: map_at_100
value: 43.85
- type: map_at_1000
value: 43.884
- type: map_at_3
value: 38.286
- type: map_at_5
value: 40.78
- type: mrr_at_1
value: 31.518
- type: mrr_at_10
value: 45.015
- type: mrr_at_100
value: 45.924
- type: mrr_at_1000
value: 45.946999999999996
- type: mrr_at_3
value: 41.348
- type: mrr_at_5
value: 43.428
- type: ndcg_at_1
value: 31.489
- type: ndcg_at_10
value: 50.285999999999994
- type: ndcg_at_100
value: 55.291999999999994
- type: ndcg_at_1000
value: 56.05
- type: ndcg_at_3
value: 41.976
- type: ndcg_at_5
value: 46.103
- type: precision_at_1
value: 31.489
- type: precision_at_10
value: 8.456
- type: precision_at_100
value: 1.125
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 19.09
- type: precision_at_5
value: 13.841000000000001
- type: recall_at_1
value: 28.008
- type: recall_at_10
value: 71.21499999999999
- type: recall_at_100
value: 92.99
- type: recall_at_1000
value: 98.578
- type: recall_at_3
value: 49.604
- type: recall_at_5
value: 59.094
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.351
- type: map_at_10
value: 84.163
- type: map_at_100
value: 84.785
- type: map_at_1000
value: 84.801
- type: map_at_3
value: 81.16
- type: map_at_5
value: 83.031
- type: mrr_at_1
value: 80.96
- type: mrr_at_10
value: 87.241
- type: mrr_at_100
value: 87.346
- type: mrr_at_1000
value: 87.347
- type: mrr_at_3
value: 86.25699999999999
- type: mrr_at_5
value: 86.907
- type: ndcg_at_1
value: 80.97
- type: ndcg_at_10
value: 88.017
- type: ndcg_at_100
value: 89.241
- type: ndcg_at_1000
value: 89.34299999999999
- type: ndcg_at_3
value: 85.053
- type: ndcg_at_5
value: 86.663
- type: precision_at_1
value: 80.97
- type: precision_at_10
value: 13.358
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.143
- type: precision_at_5
value: 24.451999999999998
- type: recall_at_1
value: 70.351
- type: recall_at_10
value: 95.39800000000001
- type: recall_at_100
value: 99.55199999999999
- type: recall_at_1000
value: 99.978
- type: recall_at_3
value: 86.913
- type: recall_at_5
value: 91.448
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.62406719814139
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 61.386700035141736
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.618
- type: map_at_10
value: 12.920000000000002
- type: map_at_100
value: 15.304
- type: map_at_1000
value: 15.656999999999998
- type: map_at_3
value: 9.187
- type: map_at_5
value: 10.937
- type: mrr_at_1
value: 22.8
- type: mrr_at_10
value: 35.13
- type: mrr_at_100
value: 36.239
- type: mrr_at_1000
value: 36.291000000000004
- type: mrr_at_3
value: 31.917
- type: mrr_at_5
value: 33.787
- type: ndcg_at_1
value: 22.8
- type: ndcg_at_10
value: 21.382
- type: ndcg_at_100
value: 30.257
- type: ndcg_at_1000
value: 36.001
- type: ndcg_at_3
value: 20.43
- type: ndcg_at_5
value: 17.622
- type: precision_at_1
value: 22.8
- type: precision_at_10
value: 11.26
- type: precision_at_100
value: 2.405
- type: precision_at_1000
value: 0.377
- type: precision_at_3
value: 19.633
- type: precision_at_5
value: 15.68
- type: recall_at_1
value: 4.618
- type: recall_at_10
value: 22.811999999999998
- type: recall_at_100
value: 48.787000000000006
- type: recall_at_1000
value: 76.63799999999999
- type: recall_at_3
value: 11.952
- type: recall_at_5
value: 15.892000000000001
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.01529458252244
- type: cos_sim_spearman
value: 77.92985224770254
- type: euclidean_pearson
value: 81.04251429422487
- type: euclidean_spearman
value: 77.92838490549133
- type: manhattan_pearson
value: 80.95892251458979
- type: manhattan_spearman
value: 77.81028089705941
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 83.97885282534388
- type: cos_sim_spearman
value: 75.1221970851712
- type: euclidean_pearson
value: 80.34455956720097
- type: euclidean_spearman
value: 74.5894274239938
- type: manhattan_pearson
value: 80.38999766325465
- type: manhattan_spearman
value: 74.68524557166975
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 82.95746064915672
- type: cos_sim_spearman
value: 85.08683458043946
- type: euclidean_pearson
value: 84.56699492836385
- type: euclidean_spearman
value: 85.66089116133713
- type: manhattan_pearson
value: 84.47553323458541
- type: manhattan_spearman
value: 85.56142206781472
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.71377893595067
- type: cos_sim_spearman
value: 81.03453291428589
- type: euclidean_pearson
value: 82.57136298308613
- type: euclidean_spearman
value: 81.15839961890875
- type: manhattan_pearson
value: 82.55157879373837
- type: manhattan_spearman
value: 81.1540163767054
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.64197832372373
- type: cos_sim_spearman
value: 88.31966852492485
- type: euclidean_pearson
value: 87.98692129976983
- type: euclidean_spearman
value: 88.6247340837856
- type: manhattan_pearson
value: 87.90437827826412
- type: manhattan_spearman
value: 88.56278787131457
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 81.84159950146693
- type: cos_sim_spearman
value: 83.90678384140168
- type: euclidean_pearson
value: 83.19005018860221
- type: euclidean_spearman
value: 84.16260415876295
- type: manhattan_pearson
value: 83.05030612994494
- type: manhattan_spearman
value: 83.99605629718336
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.49935350176666
- type: cos_sim_spearman
value: 87.59086606735383
- type: euclidean_pearson
value: 88.06537181129983
- type: euclidean_spearman
value: 87.6687448086014
- type: manhattan_pearson
value: 87.96599131972935
- type: manhattan_spearman
value: 87.63295748969642
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.68232799482763
- type: cos_sim_spearman
value: 67.99930378085793
- type: euclidean_pearson
value: 68.50275360001696
- type: euclidean_spearman
value: 67.81588179309259
- type: manhattan_pearson
value: 68.5892154749763
- type: manhattan_spearman
value: 67.84357259640682
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.37049618406554
- type: cos_sim_spearman
value: 85.57014313159492
- type: euclidean_pearson
value: 85.57469513908282
- type: euclidean_spearman
value: 85.661948135258
- type: manhattan_pearson
value: 85.36866831229028
- type: manhattan_spearman
value: 85.5043455368843
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 84.83259065376154
- type: mrr
value: 95.58455433455433
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 58.817
- type: map_at_10
value: 68.459
- type: map_at_100
value: 68.951
- type: map_at_1000
value: 68.979
- type: map_at_3
value: 65.791
- type: map_at_5
value: 67.583
- type: mrr_at_1
value: 61.667
- type: mrr_at_10
value: 69.368
- type: mrr_at_100
value: 69.721
- type: mrr_at_1000
value: 69.744
- type: mrr_at_3
value: 67.278
- type: mrr_at_5
value: 68.611
- type: ndcg_at_1
value: 61.667
- type: ndcg_at_10
value: 72.70100000000001
- type: ndcg_at_100
value: 74.928
- type: ndcg_at_1000
value: 75.553
- type: ndcg_at_3
value: 68.203
- type: ndcg_at_5
value: 70.804
- type: precision_at_1
value: 61.667
- type: precision_at_10
value: 9.533
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.444000000000003
- type: precision_at_5
value: 17.599999999999998
- type: recall_at_1
value: 58.817
- type: recall_at_10
value: 84.789
- type: recall_at_100
value: 95.0
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 72.8
- type: recall_at_5
value: 79.294
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.8108910891089
- type: cos_sim_ap
value: 95.5743678558349
- type: cos_sim_f1
value: 90.43133366385722
- type: cos_sim_precision
value: 89.67551622418878
- type: cos_sim_recall
value: 91.2
- type: dot_accuracy
value: 99.75841584158415
- type: dot_ap
value: 94.00786363627253
- type: dot_f1
value: 87.51910341314316
- type: dot_precision
value: 89.20041536863967
- type: dot_recall
value: 85.9
- type: euclidean_accuracy
value: 99.81485148514851
- type: euclidean_ap
value: 95.4752113136905
- type: euclidean_f1
value: 90.44334975369456
- type: euclidean_precision
value: 89.126213592233
- type: euclidean_recall
value: 91.8
- type: manhattan_accuracy
value: 99.81584158415842
- type: manhattan_ap
value: 95.5163172682464
- type: manhattan_f1
value: 90.51987767584097
- type: manhattan_precision
value: 92.3076923076923
- type: manhattan_recall
value: 88.8
- type: max_accuracy
value: 99.81584158415842
- type: max_ap
value: 95.5743678558349
- type: max_f1
value: 90.51987767584097
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 62.63235986949449
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.334795589585575
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.02955214518782
- type: mrr
value: 52.8004838298956
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.63769566275453
- type: cos_sim_spearman
value: 30.422379185989335
- type: dot_pearson
value: 26.88493071882256
- type: dot_spearman
value: 26.505249740971305
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.21
- type: map_at_10
value: 1.654
- type: map_at_100
value: 10.095
- type: map_at_1000
value: 25.808999999999997
- type: map_at_3
value: 0.594
- type: map_at_5
value: 0.9289999999999999
- type: mrr_at_1
value: 78.0
- type: mrr_at_10
value: 87.019
- type: mrr_at_100
value: 87.019
- type: mrr_at_1000
value: 87.019
- type: mrr_at_3
value: 86.333
- type: mrr_at_5
value: 86.733
- type: ndcg_at_1
value: 73.0
- type: ndcg_at_10
value: 66.52900000000001
- type: ndcg_at_100
value: 53.433
- type: ndcg_at_1000
value: 51.324000000000005
- type: ndcg_at_3
value: 72.02199999999999
- type: ndcg_at_5
value: 69.696
- type: precision_at_1
value: 78.0
- type: precision_at_10
value: 70.39999999999999
- type: precision_at_100
value: 55.46
- type: precision_at_1000
value: 22.758
- type: precision_at_3
value: 76.667
- type: precision_at_5
value: 74.0
- type: recall_at_1
value: 0.21
- type: recall_at_10
value: 1.8849999999999998
- type: recall_at_100
value: 13.801
- type: recall_at_1000
value: 49.649
- type: recall_at_3
value: 0.632
- type: recall_at_5
value: 1.009
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.797
- type: map_at_10
value: 9.01
- type: map_at_100
value: 14.682
- type: map_at_1000
value: 16.336000000000002
- type: map_at_3
value: 4.546
- type: map_at_5
value: 5.9270000000000005
- type: mrr_at_1
value: 24.490000000000002
- type: mrr_at_10
value: 41.156
- type: mrr_at_100
value: 42.392
- type: mrr_at_1000
value: 42.408
- type: mrr_at_3
value: 38.775999999999996
- type: mrr_at_5
value: 40.102
- type: ndcg_at_1
value: 21.429000000000002
- type: ndcg_at_10
value: 22.222
- type: ndcg_at_100
value: 34.405
- type: ndcg_at_1000
value: 46.599000000000004
- type: ndcg_at_3
value: 25.261
- type: ndcg_at_5
value: 22.695999999999998
- type: precision_at_1
value: 24.490000000000002
- type: precision_at_10
value: 19.796
- type: precision_at_100
value: 7.306
- type: precision_at_1000
value: 1.5350000000000001
- type: precision_at_3
value: 27.211000000000002
- type: precision_at_5
value: 22.857
- type: recall_at_1
value: 1.797
- type: recall_at_10
value: 15.706000000000001
- type: recall_at_100
value: 46.412
- type: recall_at_1000
value: 83.159
- type: recall_at_3
value: 6.1370000000000005
- type: recall_at_5
value: 8.599
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.3302
- type: ap
value: 14.169121204575601
- type: f1
value: 54.229345975274235
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 58.22297679683077
- type: f1
value: 58.62984908377875
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.952922428464255
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.68140907194373
- type: cos_sim_ap
value: 70.12180123666836
- type: cos_sim_f1
value: 65.77501791258658
- type: cos_sim_precision
value: 60.07853403141361
- type: cos_sim_recall
value: 72.66490765171504
- type: dot_accuracy
value: 81.92167848840674
- type: dot_ap
value: 60.49837581423469
- type: dot_f1
value: 58.44186046511628
- type: dot_precision
value: 52.24532224532224
- type: dot_recall
value: 66.3060686015831
- type: euclidean_accuracy
value: 84.73505394289802
- type: euclidean_ap
value: 70.3278904593286
- type: euclidean_f1
value: 65.98851124940161
- type: euclidean_precision
value: 60.38107752956636
- type: euclidean_recall
value: 72.74406332453826
- type: manhattan_accuracy
value: 84.73505394289802
- type: manhattan_ap
value: 70.00737738537337
- type: manhattan_f1
value: 65.80150784822642
- type: manhattan_precision
value: 61.892583120204606
- type: manhattan_recall
value: 70.23746701846966
- type: max_accuracy
value: 84.73505394289802
- type: max_ap
value: 70.3278904593286
- type: max_f1
value: 65.98851124940161
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.44258159661582
- type: cos_sim_ap
value: 84.91926704880888
- type: cos_sim_f1
value: 77.07651086632926
- type: cos_sim_precision
value: 74.5894554883319
- type: cos_sim_recall
value: 79.73514012935017
- type: dot_accuracy
value: 85.88116583226608
- type: dot_ap
value: 78.9753854779923
- type: dot_f1
value: 72.17757637979255
- type: dot_precision
value: 66.80647486729143
- type: dot_recall
value: 78.48783492454572
- type: euclidean_accuracy
value: 88.5299025885823
- type: euclidean_ap
value: 85.08006075642194
- type: euclidean_f1
value: 77.29637336504163
- type: euclidean_precision
value: 74.69836253950014
- type: euclidean_recall
value: 80.08161379735141
- type: manhattan_accuracy
value: 88.55124771995187
- type: manhattan_ap
value: 85.00941529932851
- type: manhattan_f1
value: 77.33100233100232
- type: manhattan_precision
value: 73.37572573956317
- type: manhattan_recall
value: 81.73698798891284
- type: max_accuracy
value: 88.55124771995187
- type: max_ap
value: 85.08006075642194
- type: max_f1
value: 77.33100233100232
---
# gte-small
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
## Metrics
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
## Usage
Code example
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
model = AutoModel.from_pretrained("thenlper/gte-small")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-large')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
### Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
### Citation
If you find our paper or models helpful, please consider citing them as follows:
```
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
```
| [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
Alibaba-NLP/gte-large-en-v1.5 | Alibaba-NLP | sentence-similarity | ["transformers","onnx","safetensors","new","feature-extraction","sentence-transformers","gte","mteb"(...TRUNCATED) | 2024-04-20T02:54:30 | 2024-08-09T03:32:05 | 3,819,623 | 204 | "---\ndatasets:\n- allenai/c4\nlanguage:\n- en\nlibrary_name: transformers\nlicense: apache-2.0\ntag(...TRUNCATED) | [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
BAAI/bge-small-en-v1.5 | BAAI | feature-extraction | ["sentence-transformers","pytorch","onnx","safetensors","bert","feature-extraction","sentence-simila(...TRUNCATED) | 2023-09-12T05:20:55 | 2024-02-22T03:36:23 | 3,522,362 | 297 | "---\nlanguage:\n- en\nlicense: mit\ntags:\n- sentence-transformers\n- feature-extraction\n- sentenc(...TRUNCATED) | [
"SEMANTIC_SIMILARITY",
"SUMMARIZATION"
] | [
"BEAR",
"BIOSSES",
"SCIFACT"
] |
avsolatorio/GIST-small-Embedding-v0 | avsolatorio | sentence-similarity | ["sentence-transformers","pytorch","safetensors","bert","feature-extraction","mteb","sentence-simila(...TRUNCATED) | 2024-02-03T06:14:01 | 2024-02-28T00:36:01 | 3,475,309 | 25 | "---\nlanguage:\n- en\nlibrary_name: sentence-transformers\nlicense: mit\npipeline_tag: sentence-sim(...TRUNCATED) | [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
Alibaba-NLP/gte-base-en-v1.5 | Alibaba-NLP | sentence-similarity | ["transformers","onnx","safetensors","new","feature-extraction","sentence-transformers","gte","mteb"(...TRUNCATED) | 2024-04-20T02:53:42 | 2024-11-15T14:10:57 | 2,607,332 | 63 | "---\nlanguage:\n- en\nlibrary_name: transformers\nlicense: apache-2.0\ntags:\n- sentence-transforme(...TRUNCATED) | [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
mixedbread-ai/mxbai-embed-large-v1 | mixedbread-ai | feature-extraction | ["sentence-transformers","onnx","safetensors","openvino","gguf","bert","feature-extraction","mteb","(...TRUNCATED) | 2024-03-07T15:45:34 | 2025-03-13T04:15:03 | 2,390,539 | 639 | "---\nlanguage:\n- en\nlibrary_name: sentence-transformers\nlicense: apache-2.0\npipeline_tag: featu(...TRUNCATED) | [
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
intfloat/multilingual-e5-small | intfloat | sentence-similarity | ["sentence-transformers","pytorch","onnx","safetensors","openvino","bert","mteb","Sentence Transform(...TRUNCATED) | 2023-06-30T07:31:03 | 2025-02-17T03:22:45 | 2,371,021 | 183 | "---\nlanguage:\n- multilingual\n- af\n- am\n- ar\n- as\n- az\n- be\n- bg\n- bn\n- br\n- bs\n- ca\n-(...TRUNCATED) | [
"SEMANTIC_SIMILARITY",
"TRANSLATION",
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
intfloat/multilingual-e5-large | intfloat | feature-extraction | ["sentence-transformers","pytorch","onnx","safetensors","openvino","xlm-roberta","mteb","Sentence Tr(...TRUNCATED) | 2023-06-30T07:38:19 | 2025-02-17T03:50:15 | 2,239,718 | 894 | "---\nlanguage:\n- multilingual\n- af\n- am\n- ar\n- as\n- az\n- be\n- bg\n- bn\n- br\n- bs\n- ca\n-(...TRUNCATED) | [
"SEMANTIC_SIMILARITY",
"TRANSLATION",
"SUMMARIZATION"
] | [
"BIOSSES",
"SCIFACT"
] |
BAAI/bge-large-en-v1.5 | BAAI | feature-extraction | ["sentence-transformers","pytorch","onnx","safetensors","bert","feature-extraction","sentence-simila(...TRUNCATED) | 2023-09-12T05:20:08 | 2024-02-21T02:51:44 | 2,014,014 | 495 | "---\nlanguage:\n- en\nlicense: mit\ntags:\n- sentence-transformers\n- feature-extraction\n- sentenc(...TRUNCATED) | [
"SEMANTIC_SIMILARITY",
"SUMMARIZATION"
] | [
"BEAR",
"BIOSSES",
"SCIFACT"
] |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 29