language:
- en
license: apache-2.0
size_categories:
- 10M<n<100M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark Dataset
dataset_info:
- config_name: bigfish
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 129932068797
dataset_size: 289372500000
- config_name: bossfight
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 198057598671
dataset_size: 289372500000
- config_name: caveflyer
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 149023406845
dataset_size: 289372500000
- config_name: chaser
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 63831099402
dataset_size: 289372500000
- config_name: climber
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 63990304413
dataset_size: 289372500000
- config_name: coinrun
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 76990220716
dataset_size: 289372500000
- config_name: dodgeball
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 104691253324
dataset_size: 289372500000
- config_name: fruitbot
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 271549939959
dataset_size: 289372500000
- config_name: heist
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 74316944819
dataset_size: 289372500000
- config_name: jumper
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 101573987650
dataset_size: 289372500000
- config_name: leaper
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 66796546658
dataset_size: 289372500000
- config_name: maze
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 75397896559
dataset_size: 289372500000
- config_name: miner
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 57170722948
dataset_size: 289372500000
- config_name: ninja
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 99759972643
dataset_size: 289372500000
- config_name: plunder
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 103307437365
dataset_size: 289372500000
- config_name: starpilot
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 260435250000
num_examples: 9000000
- name: test
num_bytes: 28937250000
num_examples: 1000000
download_size: 170031712117
dataset_size: 289372500000
configs:
- config_name: bigfish
data_files:
- split: train
path: bigfish/train-*
- split: test
path: bigfish/test-*
- config_name: bossfight
data_files:
- split: train
path: bossfight/train-*
- split: test
path: bossfight/test-*
- config_name: caveflyer
data_files:
- split: train
path: caveflyer/train-*
- split: test
path: caveflyer/test-*
- config_name: chaser
data_files:
- split: train
path: chaser/train-*
- split: test
path: chaser/test-*
- config_name: climber
data_files:
- split: train
path: climber/train-*
- split: test
path: climber/test-*
- config_name: coinrun
data_files:
- split: train
path: coinrun/train-*
- split: test
path: coinrun/test-*
- config_name: dodgeball
data_files:
- split: train
path: dodgeball/train-*
- split: test
path: dodgeball/test-*
- config_name: fruitbot
data_files:
- split: train
path: fruitbot/train-*
- split: test
path: fruitbot/test-*
- config_name: heist
data_files:
- split: train
path: heist/train-*
- split: test
path: heist/test-*
- config_name: jumper
data_files:
- split: train
path: jumper/train-*
- split: test
path: jumper/test-*
- config_name: leaper
data_files:
- split: train
path: leaper/train-*
- split: test
path: leaper/test-*
- config_name: maze
data_files:
- split: train
path: maze/train-*
- split: test
path: maze/test-*
- config_name: miner
data_files:
- split: train
path: miner/train-*
- split: test
path: miner/test-*
- config_name: ninja
data_files:
- split: train
path: ninja/train-*
- split: test
path: ninja/test-*
- config_name: plunder
data_files:
- split: train
path: plunder/train-*
- split: test
path: plunder/test-*
- config_name: starpilot
data_files:
- split: train
path: starpilot/train-*
- split: test
path: starpilot/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
- bossfight
- caveflyer
- chaser
- climber
- dodgeball
- fruitbot
- heist
- jumper
- leaper
- maze
- miner
- ninja
- plunder
- starpilot
Procgen Benchmark
This dataset contains expert trajectories generated by a PPO reinforcement learning agent trained on each of the 16 procedurally-generated gym environments from the Procgen Benchmark. The environments were created on distribution_mode=easy
and with unlimited levels.
Disclaimer: This is not an official repository from OpenAI.
Dataset Usage
Regular usage (for environment bigfish):
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="test")
Usage with PyTorch (for environment bossfight):
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="test").with_format("torch")
Agent Performance
The PPO RL agent was trained for 25M steps on each environment and obtained the following final performance metrics on the evaluation environment. These values are attain or surpass the performance described in "Easy Difficulty Baseline Results" in Appendix I of the paper.
Environment | Steps (Train) | Steps (Test) | Return | Observation |
---|---|---|---|---|
bigfish | 9,000,000 | 1,000,000 | 29.72 | |
bossfight | 9,000,000 | 1,000,000 | 11.13 | |
caveflyer | 9,000,000 | 1,000,000 | 08.95 | |
chaser | 9,000,000 | 1,000,000 | 10.98 | |
climber | 9,000,000 | 1,000,000 | 11.66 | |
coinrun | 9,000,000 | 1,000,000 | 09.61 | |
dodgeball | 9,000,000 | 1,000,000 | 11.07 | |
fruitbot | 9,000,000 | 1,000,000 | 32.49 | |
heist | 9,000,000 | 1,000,000 | 08.37 | |
jumper | 9,000,000 | 1,000,000 | 08.46 | |
leaper | 9,000,000 | 1,000,000 | 07.11 | |
maze | 9,000,000 | 1,000,000 | 09.95 | |
miner | 9,000,000 | 1,000,000 | 12.21 | |
ninja | 9,000,000 | 1,000,000 | 08.88 | |
plunder | 9,000,000 | 1,000,000 | 22.19 | |
starpilot | 9,000,000 | 1,000,000 | 49.94 |
Dataset Structure
Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).
{'action': 1,
'done': False,
'observation': [[[0, 166, 253],
[0, 174, 255],
[0, 170, 251],
[0, 191, 255],
[0, 191, 255],
[0, 221, 255],
[0, 243, 255],
[0, 248, 255],
[0, 243, 255],
[10, 239, 255],
[25, 255, 255],
[0, 241, 255],
[0, 235, 255],
[17, 240, 255],
[10, 243, 255],
[27, 253, 255],
[39, 255, 255],
[58, 255, 255],
[85, 255, 255],
[111, 255, 255],
[135, 255, 255],
[151, 255, 255],
[173, 255, 255],
...
[0, 0, 37],
[0, 0, 39]]],
'reward': 0.0,
'truncated': False}
Data Fields
observation
: The current RGB observation from the environment.action
: The action predicted by the agent for the current observation.reward
: The received reward from stepping the environment with the current action.done
: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.truncated
: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.
Data Splits
The dataset is divided into a train
(90%) and test
(10%) split. Each environment-dataset has in sum 10M steps (data points).
Dataset Creation
The dataset was created by training an RL agent with PPO for 25M steps in each environment. The trajectories where generated by sampling from the predicted action distribution at each step (not taking the argmax). The environments were created on distribution_mode=easy
and with unlimited levels.
Procgen Benchmark
The Procgen Benchmark, released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft.