Datasets:

File size: 10,049 Bytes
45a87fc
 
 
 
 
e7fe05d
7d33925
c11b49d
45a87fc
 
 
 
 
 
 
 
 
 
 
 
c588eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a87fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c588eed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
---
annotations_creators:
- no-annotation
language_creators:
- found
language: []
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Electricity Transformer Temperature
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: h1
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: test
    num_bytes: 77508960
    num_examples: 240
  - name: train
    num_bytes: 241978
    num_examples: 1
  - name: validation
    num_bytes: 33916080
    num_examples: 120
  download_size: 2589657
  dataset_size: 111667018
- config_name: h2
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: test
    num_bytes: 77508960
    num_examples: 240
  - name: train
    num_bytes: 241978
    num_examples: 1
  - name: validation
    num_bytes: 33916080
    num_examples: 120
  download_size: 2417960
  dataset_size: 111667018
- config_name: m1
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: test
    num_bytes: 1239008640
    num_examples: 960
  - name: train
    num_bytes: 967738
    num_examples: 1
  - name: validation
    num_bytes: 542089920
    num_examples: 480
  download_size: 10360719
  dataset_size: 1782066298
- config_name: m2
  features:
  - name: start
    dtype: timestamp[s]
  - name: target
    sequence: float32
  - name: feat_static_cat
    sequence: uint64
  - name: feat_dynamic_real
    sequence:
      sequence: float32
  - name: item_id
    dtype: string
  splits:
  - name: test
    num_bytes: 1239008640
    num_examples: 960
  - name: train
    num_bytes: 967738
    num_examples: 1
  - name: validation
    num_bytes: 542089920
    num_examples: 480
  download_size: 9677236
  dataset_size: 1782066298
---

# Dataset Card for [Electricity Transformer Temperature](https://github.com/zhouhaoyi/ETDataset)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Electricity Transformer Dataset](https://github.com/zhouhaoyi/ETDataset)
- **Repository:** https://github.com/zhouhaoyi/ETDataset
- **Paper:** [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436)
- **Point of Contact:** [Haoyi Zhou](mailto:zhouhy@act.buaa.edu.cn)

### Dataset Summary

The electric power distribution problem is the distribution of electricity to different areas depending on its sequential usage. But predicting the future demand of a specific area is difficult, as it varies with weekdays, holidays, seasons, weather, temperatures, etc. However, no existing method can perform a long-term prediction based on super long-term real-world data with high precision. Any false predictions may damage the electrical transformer. So currently, without an efficient method to predict future electric usage, managers have to make decisions based on the empirical number, which is much higher than the real-world demands. It causes unnecessary waste of electric and equipment depreciation. On the other hand, the oil temperatures can reflect the condition of the  Transformer. One of the most efficient strategies is to predict how the electrical transformers' oil temperature is safe and avoid unnecessary waste. As a result, to address this problem, the authors and Beijing Guowang Fuda Science & Technology Development Company have provided 2-years worth of data.

Specifically, the dataset combines short-term periodical patterns, long-term periodical patterns, long-term trends, and many irregular patterns. The dataset are obtained from  2 Electricity Transformers at 2 stations  and come in an `1H` (hourly) or `15T` (15-minute) frequency containing 2 year * 365 days * 24 hours * (4 for 15T) times = 17,520 (70,080 for 15T) data points.

The target time series is the  **O**il **T**emperature and the dataset comes with the following 6 covariates in the univariate setup:
* **H**igh **U**se**F**ul **L**oad 
* **H**igh **U**se**L**ess **L**oad
* **M**iddle **U**se**F**ul **L**oad 
* **M**iddle **U**se**L**ess **L**oad 
* **L**ow **U**se**F**ul **L**oad 
* **L**ow **U**se**L**ess **L**oad


### Dataset Usage

To load a particular variant of the dataset just specify its name e.g:

```python
load_dataset("ett", "m1", multivariate=False) # univariate 15-min frequency dataset from first transformer
```

or to specify a prediction length:

```python
load_dataset("ett", "h2", prediction_length=48) # multivariate dataset from second transformer with prediction length of 48 (hours)
```


### Supported Tasks and Leaderboards

The time series data is split into  train/val/test  set of 12/4/4 months respectively.  Given the prediction length (default: 1 day (24 hours or 24*4 15T)) we create rolling windows of this size for the val/test sets. 

#### `time-series-forecasting`

##### `univariate-time-series-forecasting`

The univariate time series forecasting tasks involves learning the future one dimensional `target` values of a time series in a dataset for some `prediction_length` time steps. The performance of the forecast models can then be validated via the ground truth in the `validation` split and tested via the `test` split. The covriates are stored in the `feat_dynamic_real` key of each time series.

##### `multivariate-time-series-forecasting`

The multivariate time series forecasting task involves learning the future vector of `target` values of a time series in a dataset for some `prediction_length` time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the `validation` split and tested via the `test` split.


### Languages

## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```python
{
  'start': datetime.datetime(2012, 1, 1, 0, 0),
  'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
  'feat_static_cat': [0], 
  'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
  'item_id': 'OT'
}
```

### Data Fields

For the univariate regular time series each series has the following keys:

* `start`: a datetime of the first entry of each time series in the dataset
* `target`: an array[float32] of the actual target values
* `feat_static_cat`: an array[uint64] which contains a categorical identifier of each time series in the dataset
* `feat_dynamic_real`: optional array of covariate features
* `item_id`: a string identifier of each time series in a dataset for reference

For the multivariate time series the `target` is a vector of the multivariate dimension for each time point.

### Data Splits

The time series data is split into  train/val/test  set of 12/4/4 months respectively.

## Dataset Creation

### Curation Rationale

Develop time series methods  that can perform a long-term prediction based on super long-term real-world data with high precision.

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

* [Haoyi Zhou](mailto:zhouhy@act.buaa.edu.cn)

### Licensing Information

[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)

### Citation Information

```tex
@inproceedings{haoyietal-informer-2021,
  author    = {Haoyi Zhou and
               Shanghang Zhang and
               Jieqi Peng and
               Shuai Zhang and
               Jianxin Li and
               Hui Xiong and
               Wancai Zhang},
  title     = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference},
  volume    = {35},
  number    = {12},
  pages     = {11106--11115},
  publisher = {{AAAI} Press},
  year      = {2021},
}
```

### Contributions

Thanks to [@kashif](https://github.com/kashif) for adding this dataset.