Datasets:
File size: 10,049 Bytes
45a87fc e7fe05d 7d33925 c11b49d 45a87fc c588eed 45a87fc c588eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language: []
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Electricity Transformer Temperature
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: h1
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: test
num_bytes: 77508960
num_examples: 240
- name: train
num_bytes: 241978
num_examples: 1
- name: validation
num_bytes: 33916080
num_examples: 120
download_size: 2589657
dataset_size: 111667018
- config_name: h2
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: test
num_bytes: 77508960
num_examples: 240
- name: train
num_bytes: 241978
num_examples: 1
- name: validation
num_bytes: 33916080
num_examples: 120
download_size: 2417960
dataset_size: 111667018
- config_name: m1
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: test
num_bytes: 1239008640
num_examples: 960
- name: train
num_bytes: 967738
num_examples: 1
- name: validation
num_bytes: 542089920
num_examples: 480
download_size: 10360719
dataset_size: 1782066298
- config_name: m2
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: test
num_bytes: 1239008640
num_examples: 960
- name: train
num_bytes: 967738
num_examples: 1
- name: validation
num_bytes: 542089920
num_examples: 480
download_size: 9677236
dataset_size: 1782066298
---
# Dataset Card for [Electricity Transformer Temperature](https://github.com/zhouhaoyi/ETDataset)
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Electricity Transformer Dataset](https://github.com/zhouhaoyi/ETDataset)
- **Repository:** https://github.com/zhouhaoyi/ETDataset
- **Paper:** [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436)
- **Point of Contact:** [Haoyi Zhou](mailto:zhouhy@act.buaa.edu.cn)
### Dataset Summary
The electric power distribution problem is the distribution of electricity to different areas depending on its sequential usage. But predicting the future demand of a specific area is difficult, as it varies with weekdays, holidays, seasons, weather, temperatures, etc. However, no existing method can perform a long-term prediction based on super long-term real-world data with high precision. Any false predictions may damage the electrical transformer. So currently, without an efficient method to predict future electric usage, managers have to make decisions based on the empirical number, which is much higher than the real-world demands. It causes unnecessary waste of electric and equipment depreciation. On the other hand, the oil temperatures can reflect the condition of the Transformer. One of the most efficient strategies is to predict how the electrical transformers' oil temperature is safe and avoid unnecessary waste. As a result, to address this problem, the authors and Beijing Guowang Fuda Science & Technology Development Company have provided 2-years worth of data.
Specifically, the dataset combines short-term periodical patterns, long-term periodical patterns, long-term trends, and many irregular patterns. The dataset are obtained from 2 Electricity Transformers at 2 stations and come in an `1H` (hourly) or `15T` (15-minute) frequency containing 2 year * 365 days * 24 hours * (4 for 15T) times = 17,520 (70,080 for 15T) data points.
The target time series is the **O**il **T**emperature and the dataset comes with the following 6 covariates in the univariate setup:
* **H**igh **U**se**F**ul **L**oad
* **H**igh **U**se**L**ess **L**oad
* **M**iddle **U**se**F**ul **L**oad
* **M**iddle **U**se**L**ess **L**oad
* **L**ow **U**se**F**ul **L**oad
* **L**ow **U**se**L**ess **L**oad
### Dataset Usage
To load a particular variant of the dataset just specify its name e.g:
```python
load_dataset("ett", "m1", multivariate=False) # univariate 15-min frequency dataset from first transformer
```
or to specify a prediction length:
```python
load_dataset("ett", "h2", prediction_length=48) # multivariate dataset from second transformer with prediction length of 48 (hours)
```
### Supported Tasks and Leaderboards
The time series data is split into train/val/test set of 12/4/4 months respectively. Given the prediction length (default: 1 day (24 hours or 24*4 15T)) we create rolling windows of this size for the val/test sets.
#### `time-series-forecasting`
##### `univariate-time-series-forecasting`
The univariate time series forecasting tasks involves learning the future one dimensional `target` values of a time series in a dataset for some `prediction_length` time steps. The performance of the forecast models can then be validated via the ground truth in the `validation` split and tested via the `test` split. The covriates are stored in the `feat_dynamic_real` key of each time series.
##### `multivariate-time-series-forecasting`
The multivariate time series forecasting task involves learning the future vector of `target` values of a time series in a dataset for some `prediction_length` time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the `validation` split and tested via the `test` split.
### Languages
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```python
{
'start': datetime.datetime(2012, 1, 1, 0, 0),
'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
'feat_static_cat': [0],
'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
'item_id': 'OT'
}
```
### Data Fields
For the univariate regular time series each series has the following keys:
* `start`: a datetime of the first entry of each time series in the dataset
* `target`: an array[float32] of the actual target values
* `feat_static_cat`: an array[uint64] which contains a categorical identifier of each time series in the dataset
* `feat_dynamic_real`: optional array of covariate features
* `item_id`: a string identifier of each time series in a dataset for reference
For the multivariate time series the `target` is a vector of the multivariate dimension for each time point.
### Data Splits
The time series data is split into train/val/test set of 12/4/4 months respectively.
## Dataset Creation
### Curation Rationale
Develop time series methods that can perform a long-term prediction based on super long-term real-world data with high precision.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
* [Haoyi Zhou](mailto:zhouhy@act.buaa.edu.cn)
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
```tex
@inproceedings{haoyietal-informer-2021,
author = {Haoyi Zhou and
Shanghang Zhang and
Jieqi Peng and
Shuai Zhang and
Jianxin Li and
Hui Xiong and
Wancai Zhang},
title = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting},
booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference},
volume = {35},
number = {12},
pages = {11106--11115},
publisher = {{AAAI} Press},
year = {2021},
}
```
### Contributions
Thanks to [@kashif](https://github.com/kashif) for adding this dataset. |