Datasets:
EMBO
/

Languages:
English
ArXiv:
DOI:
License:
File size: 11,127 Bytes
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e6622
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2bda57
06354d4
 
59171e9
0ea8fb8
59fb3d8
7285026
 
 
 
 
59fb3d8
 
7285026
 
 
 
 
59fb3d8
1ba2151
08f5766
59171e9
 
 
 
 
 
 
b114e70
674333f
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
b114e70
674333f
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
b114e70
674333f
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7da8f
 
674333f
59171e9
 
 
 
 
 
 
 
 
 
 
674333f
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e03fc
1961a1a
94e03fc
49caefd
 
 
94e03fc
 
 
59171e9
 
 
 
 
 
 
94e03fc
59171e9
 
 
 
94e03fc
59171e9
 
 
 
94e03fc
59171e9
 
 
 
 
 
 
 
 
 
 
 
49caefd
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a46d4a
59171e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py

from __future__ import absolute_import, division, print_function

import json
import datasets

_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"

class SourceData(datasets.GeneratorBasedBuilder):
    """SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""

    _NER_LABEL_NAMES = [
        "O",
        "B-SMALL_MOLECULE",
        "I-SMALL_MOLECULE",
        "B-GENEPROD",
        "I-GENEPROD",
        "B-SUBCELLULAR",
        "I-SUBCELLULAR",
        "B-CELL_TYPE",
        "I-CELL_TYPE",
        "B-TISSUE",
        "I-TISSUE",
        "B-ORGANISM",
        "I-ORGANISM",
        "B-EXP_ASSAY",
        "I-EXP_ASSAY",
        "B-DISEASE",
        "I-DISEASE",
        "B-CELL_LINE",
        "I-CELL_LINE"
    ]
    _SEMANTIC_ROLES =  ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
    _PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
    _ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]

    _CITATION = """\
    @Unpublished{
        huggingface: dataset,
        title = {SourceData NLP},
        authors={Thomas Lemberger & Jorge Abreu-Vicente, EMBO},
        year={2023}
    }
    """

    _DESCRIPTION = """\
    This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
    """

    _HOMEPAGE = "https://huggingface.co/datasets/EMBO/SourceData"

    _LICENSE = "CC-BY 4.0"

    DEFAULT_CONFIG_NAME = "NER"

    _LATEST_VERSION = "1.0.0"

    def _info(self):
        VERSION = self.config.version if self.config.version not in ["0.0.0", "latest"] else self._LATEST_VERSION
        self._URLS = {
            "NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
            "PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
            "ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
            "ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
            "ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
        }
        self.BUILDER_CONFIGS = [
            datasets.BuilderConfig(name="NER", version=VERSION, description="Dataset for named-entity recognition."),
            datasets.BuilderConfig(name="PANELIZATION", version=VERSION, description="Dataset to separate figure captions into panels."),
            datasets.BuilderConfig(name="ROLES_GP", version=VERSION, description="Dataset for semantic roles of gene products."),
            datasets.BuilderConfig(name="ROLES_SM", version=VERSION, description="Dataset for semantic roles of small molecules."),
            datasets.BuilderConfig(name="ROLES_MULTI", version=VERSION, description="Dataset to train roles. ROLES_GP and ROLES_SM at once."),
        ]
        
        if self.config.name in ["NER", "default"]:
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(num_classes=len(self._NER_LABEL_NAMES),
                                                    names=self._NER_LABEL_NAMES)
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_GP":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES
                        )
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_SM":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES
                        )
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_MULTI":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES
                        )
                    ),
                    "is_category": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._ROLES_MULTI),
                            names=self._ROLES_MULTI
                        )
                    ),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "PANELIZATION":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(num_classes=len(self._PANEL_START_NAMES),
                                                    names=self._PANEL_START_NAMES)
                    ),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                }
            )

        return datasets.DatasetInfo(
            description=self._DESCRIPTION,
            features=features,
            supervised_keys=("words", "label_ids"),
            homepage=self._HOMEPAGE,
            license=self._LICENSE,
            citation=self._CITATION,
        )
    
    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """Returns SplitGenerators.
        Uses local files if a data_dir is specified. Otherwise downloads the files from their official url."""

        try:
            config_name = self.config.name if self.config.name != "default" else "NER"
            urls = [
                self._URLS[config_name]+"train.jsonl",
                self._URLS[config_name]+"test.jsonl",
                self._URLS[config_name]+"validation.jsonl"
            ]
            data_files = dl_manager.download(urls)
        except:
            raise ValueError(f"unkonwn config name: {self.config.name}")
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_files[0]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_files[1]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_files[2]},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
        It is in charge of opening the given file and yielding (key, example) tuples from the dataset
        The key is not important, it's more here for legacy reason (legacy from tfds)"""

        with open(filepath, encoding="utf-8") as f:
            # logger.info("⏳ Generating examples from = %s", filepath)
            for id_, row in enumerate(f):
                data = json.loads(row)
                if self.config.name in ["NER", "default"]:
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"]
                    }
                elif self.config.name == "ROLES_GP":
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"]
                    }
                elif self.config.name == "ROLES_MULTI":
                    labels = data["labels"]
                    tag_mask = [1 if t!=0 else 0 for t in labels]
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": tag_mask,
                        "is_category": data["is_category"],
                        "text": data["text"]
                    }
                elif self.config.name == "ROLES_SM":
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"]
                    }
                elif self.config.name == "PANELIZATION":
                    labels = data["labels"]
                    tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels]
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": tag_mask,
                    }