Datasets:
File size: 11,064 Bytes
59171e9 a1e6622 59171e9 f2bda57 59171e9 7285026 59fb3d8 7285026 59fb3d8 7285026 59fb3d8 1ba2151 08f5766 59171e9 b114e70 674333f 59171e9 b114e70 674333f 59171e9 b114e70 674333f 59171e9 ef7da8f 674333f 59171e9 674333f 59171e9 94e03fc 1961a1a 94e03fc 49caefd 94e03fc 59171e9 94e03fc 59171e9 94e03fc 59171e9 94e03fc 59171e9 49caefd 59171e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
from __future__ import absolute_import, division, print_function
import json
import datasets
_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"
class SourceData(datasets.GeneratorBasedBuilder):
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
_NER_LABEL_NAMES = [
"O",
"B-SMALL_MOLECULE",
"I-SMALL_MOLECULE",
"B-GENEPROD",
"I-GENEPROD",
"B-SUBCELLULAR",
"I-SUBCELLULAR",
"B-CELL_TYPE",
"I-CELL_TYPE",
"B-TISSUE",
"I-TISSUE",
"B-ORGANISM",
"I-ORGANISM",
"B-EXP_ASSAY",
"I-EXP_ASSAY",
"B-DISEASE",
"I-DISEASE",
"B-CELL_LINE",
"I-CELL_LINE"
]
_SEMANTIC_ROLES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
_CITATION = """\
@Unpublished{
huggingface: dataset,
title = {SourceData NLP},
authors={Thomas Lemberger & Jorge Abreu-Vicente, EMBO},
year={2023}
}
"""
_DESCRIPTION = """\
This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
"""
_HOMEPAGE = "https://huggingface.co/datasets/EMBO/SourceData"
_LICENSE = "CC-BY 4.0"
DEFAULT_CONFIG_NAME = "NER"
def _info(self):
VERSION = self.config.version if self.config.version != "0.0.0" else "1.0.0"
self._URLS = {
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
}
self.BUILDER_CONFIGS = [
datasets.BuilderConfig(name="NER", version=VERSION, description="Dataset for named-entity recognition."),
datasets.BuilderConfig(name="PANELIZATION", version=VERSION, description="Dataset to separate figure captions into panels."),
datasets.BuilderConfig(name="ROLES_GP", version=VERSION, description="Dataset for semantic roles of gene products."),
datasets.BuilderConfig(name="ROLES_SM", version=VERSION, description="Dataset for semantic roles of small molecules."),
datasets.BuilderConfig(name="ROLES_MULTI", version=VERSION, description="Dataset to train roles. ROLES_GP and ROLES_SM at once."),
]
if self.config.name in ["NER", "default"]:
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(num_classes=len(self._NER_LABEL_NAMES),
names=self._NER_LABEL_NAMES)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_GP":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES
)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_SM":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES
)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_MULTI":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES
)
),
"is_category": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._ROLES_MULTI),
names=self._ROLES_MULTI
)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "PANELIZATION":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(num_classes=len(self._PANEL_START_NAMES),
names=self._PANEL_START_NAMES)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
}
)
return datasets.DatasetInfo(
description=self._DESCRIPTION,
features=features,
supervised_keys=("words", "label_ids"),
homepage=self._HOMEPAGE,
license=self._LICENSE,
citation=self._CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators.
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url."""
try:
config_name = self.config.name if self.config.name != "default" else "NER"
urls = [
self._URLS[config_name]+"train.jsonl",
self._URLS[config_name]+"test.jsonl",
self._URLS[config_name]+"validation.jsonl"
]
data_files = dl_manager.download(urls)
except:
raise ValueError(f"unkonwn config name: {self.config.name}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_files[0]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_files[1]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_files[2]},
),
]
def _generate_examples(self, filepath):
"""Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
The key is not important, it's more here for legacy reason (legacy from tfds)"""
with open(filepath, encoding="utf-8") as f:
# logger.info("⏳ Generating examples from = %s", filepath)
for id_, row in enumerate(f):
data = json.loads(row)
if self.config.name in ["NER", "default"]:
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"]
}
elif self.config.name == "ROLES_GP":
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"]
}
elif self.config.name == "ROLES_MULTI":
labels = data["labels"]
tag_mask = [1 if t!=0 else 0 for t in labels]
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": tag_mask,
"category": data["is_category"],
"text": data["text"]
}
elif self.config.name == "ROLES_SM":
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"]
}
elif self.config.name == "PANELIZATION":
labels = data["labels"]
tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels]
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": tag_mask,
}
|