File size: 11,629 Bytes
da802fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d89d86
da802fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding=utf-8

"""QUAERO Corpus"""

import os
import datasets
from tqdm import tqdm

from datasets import load_dataset

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@InProceedings{neveol14quaero, 
  author = {Névéol, Aurélie and Grouin, Cyril and Leixa, Jeremy 
            and Rosset, Sophie and Zweigenbaum, Pierre},
  title = {The {QUAERO} {French} Medical Corpus: A Ressource for
           Medical Entity Recognition and Normalization}, 
  OPTbooktitle = {Proceedings of the Fourth Workshop on Building 
                 and Evaluating Ressources for Health and Biomedical 
                 Text Processing}, 
  booktitle = {Proc of BioTextMining Work}, 
  OPTseries = {BioTxtM 2014}, 
  year = {2014}, 
  pages = {24--30}, 
}
"""

_LICENSE = """
GNU Free Documentation License v1.3
"""

_DESCRIPTION = """
The QUAERO French Medical Corpus has been initially developed as a resource for named entity recognition and normalization [1]. It was then improved with the purpose of creating a gold standard set of normalized entities for French biomedical text, that was used in the CLEF eHealth evaluation lab [2][3].
A selection of MEDLINE titles and EMEA documents were manually annotated. The annotation process was guided by concepts in the Unified Medical Language System (UMLS):
1. Ten types of clinical entities, as defined by the following UMLS Semantic Groups (Bodenreider and McCray 2003) were annotated: Anatomy, Chemical and Drugs, Devices, Disorders, Geographic Areas, Living Beings, Objects, Phenomena, Physiology, Procedures.
2. The annotations were made in a comprehensive fashion, so that nested entities were marked, and entities could be mapped to more than one UMLS concept. In particular: (a) If a mention can refer to more than one Semantic Group, all the relevant Semantic Groups should be annotated. For instance, the mention “récidive” (recurrence) in the phrase “prévention des récidives” (recurrence prevention) should be annotated with the category “DISORDER” (CUI C2825055) and the category “PHENOMENON” (CUI C0034897); (b) If a mention can refer to more than one UMLS concept within the same Semantic Group, all the relevant concepts should be annotated. For instance, the mention “maniaques” (obsessive) in the phrase “patients maniaques” (obsessive patients) should be annotated with CUIs C0564408 and C0338831 (category “DISORDER”); (c) Entities which span overlaps with that of another entity should still be annotated. For instance, in the phrase “infarctus du myocarde” (myocardial infarction), the mention “myocarde” (myocardium) should be annotated with category “ANATOMY” (CUI C0027061) and the mention “infarctus du myocarde” should be annotated with category “DISORDER” (CUI C0027051)
The QUAERO French Medical Corpus BioC release comprises a subset of the QUAERO French Medical corpus, as follows:
Training data (BRAT version used in CLEF eHealth 2015 task 1b as training data): 
- MEDLINE_train_bioc file: 833 MEDLINE titles, annotated with normalized entities in the BioC format 
- EMEA_train_bioc file: 3 EMEA documents, segmented into 11 sub-documents, annotated with normalized entities in the BioC format 
Development data  (BRAT version used in CLEF eHealth 2015 task 1b as test data and in CLEF eHealth 2016 task 2 as development data): 
- MEDLINE_dev_bioc file: 832 MEDLINE titles, annotated with normalized entities in the BioC format
- EMEA_dev_bioc file: 3 EMEA documents, segmented into 12 sub-documents, annotated with normalized entities in the BioC format 
Test data (BRAT version used in CLEF eHealth 2016 task 2 as test data): 
- MEDLINE_test_bioc folder: 833 MEDLINE titles, annotated with normalized entities in the BioC format 
- EMEA folder_test_bioc: 4 EMEA documents, segmented into 15 sub-documents, annotated with normalized entities in the BioC format 
This release of the QUAERO French medical corpus, BioC version, comes in the BioC format, through automatic conversion from the original BRAT format obtained with the Brat2BioC tool https://bitbucket.org/nicta_biomed/brat2bioc developped by Jimeno Yepes et al.
Antonio Jimeno Yepes, Mariana Neves, Karin Verspoor 
Brat2BioC: conversion tool between brat and BioC
BioCreative IV track 1 - BioC: The BioCreative Interoperability Initiative, 2013
Please note that the original version of the QUAERO corpus distributed in the CLEF eHealth challenge 2015 and 2016 came in the BRAT stand alone format. It was distributed with the CLEF eHealth evaluation tool. This original distribution of the QUAERO French Medical corpus is available separately from https://quaerofrenchmed.limsi.fr  
All questions regarding the task or data should be addressed to aurelie.neveol@limsi.fr
"""
    
_LABELS_BASE = ['DISO', 'DEVI', 'CHEM', 'GEOG', 'OBJC', 'PHEN', 'PHYS', 'LIVB', 'PROC', 'ANAT']

class QUAERO(datasets.GeneratorBasedBuilder):
    """QUAERO dataset."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="emea", version=VERSION, description="The EMEA QUAERO corpora"),
        datasets.BuilderConfig(name="medline", version=VERSION, description="The MEDLINE QUAERO corpora"),
    ]

    DEFAULT_CONFIG_NAME = "emea"

    def _info(self):

        if self.config.name == "emea":
            
            return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        "document_id": datasets.Value("string"),
                        "tokens": datasets.Sequence(datasets.Value("string")),
                        "ner_tags": datasets.Sequence(
                            datasets.features.ClassLabel(
                                names = ['O', 'LIVB', 'PROC', 'ANAT', 'DEVI', 'CHEM', 'GEOG', 'PHYS', 'PHEN', 'DISO', 'OBJC', 'CHEM_PHYS', 'ANAT_LIVB', 'ANAT_PROC', 'ANAT_DISO', 'DISO_PHYS', 'CHEM_OBJC', 'CHEM_LIVB', 'LIVB_PHYS', 'CHEM_PROC', 'PHEN_PROC', 'OBJC_PHEN', 'ANAT_CHEM', 'PHEN_PHYS', 'GEOG_LIVB', 'DISO_LIVB', 'CHEM_DISO', 'DISO_PROC', 'ANAT_PHYS', 'CHEM_DISO_PHYS', 'ANAT_DISO_PHYS', 'DISO_LIVB_PHYS'],
                            )
                        ),
                    }
                ),
                supervised_keys=None,
                homepage="https://quaerofrenchmed.limsi.fr/",
                citation=_CITATION,
                license=_LICENSE,
            )
        
        elif self.config.name == "medline":
            return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        "document_id": datasets.Value("string"),
                        "tokens": datasets.Sequence(datasets.Value("string")),
                        "ner_tags": datasets.Sequence(
                            datasets.features.ClassLabel(
                                names = ['O', 'LIVB', 'PROC', 'ANAT', 'DEVI', 'CHEM', 'GEOG', 'PHYS', 'PHEN', 'DISO', 'OBJC', 'CHEM_DEVI', 'CHEM_PHYS', 'ANAT_LIVB', 'ANAT_PROC', 'DEVI_OBJC', 'ANAT_DEVI', 'ANAT_PHEN', 'PHYS_PROC', 'ANAT_DISO', 'DEVI_DISO', 'DISO_PHYS', 'CHEM_OBJC', 'CHEM_LIVB', 'LIVB_PHYS', 'CHEM_PROC', 'LIVB_OBJC', 'PHEN_PROC', 'DISO_OBJC', 'OBJC_PHEN', 'LIVB_PROC', 'ANAT_CHEM', 'ANAT_OBJC', 'PHEN_PHYS', 'GEOG_LIVB', 'DEVI_PROC', 'DEVI_PHEN', 'DISO_LIVB', 'DEVI_PHYS', 'CHEM_PHEN', 'DISO_PHEN', 'CHEM_DISO', 'OBJC_PROC', 'DISO_PROC', 'ANAT_PHYS', 'ANAT_PHYS_PROC', 'CHEM_DISO_LIVB', 'ANAT_DISO_PHYS', 'ANAT_CHEM_PROC', 'ANAT_DISO_LIVB', 'ANAT_DEVI_PROC', 'DISO_PHEN_PHYS', 'DISO_LIVB_PHYS', 'DISO_PHEN_PROC', 'ANAT_PHEN_PROC'],
                            )
                        ),
                    }
                ),
                supervised_keys=None,
                homepage="https://quaerofrenchmed.limsi.fr/",
                citation=_CITATION,
                license=_LICENSE,
            )

    def _split_generators(self, dl_manager):

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "validation",
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                }
            ),
        ]

    def convert_to_prodigy(self, json_object):
        
        new_json = []

        for ex in json_object:

            tokenized_text = ex['text'].split()

            list_spans = []

            for a in ex['text_bound_annotations']:

                for o in range(len(a['offsets'])):

                    offset_start = a['offsets'][o][0]
                    offset_end = a['offsets'][o][1]

                    nb_tokens_annot = len(a['text'][o].split())

                    nb_tokens_before_annot = len(ex['text'][:offset_start].split())
                    nb_tokens_after_annot = len(ex['text'][offset_end:].split())

                    token_start = nb_tokens_before_annot
                    token_end = token_start + nb_tokens_annot - 1

                    list_spans.append({
                        'start': offset_start,
                        'end': offset_end,
                        'token_start': token_start,
                        'token_end': token_end,
                        'label': a['type'],
                        'id': a['id'],
                        'text': a['text'][o],
                    })

            res = {
                'id': ex['id'],
                'document_id': ex['document_id'],
                'text': ex['text'],
                'tokens': tokenized_text,
                'spans': list_spans
            }

            new_json.append(res)
            
        return new_json

    def convert_to_hf_format(self, json_object, list_label):
        """
        Le format prends en compte le multilabel en faisant une concaténation avec "_" entre chaque label
        """
        
        dict_out = []
        
        for i in json_object:
            
            nb_tokens = len(i['tokens'])
            
            ner_tags = ['O']*nb_tokens
            
            if 'spans' in i:  

                for j in i['spans']:

                    for x in range(j['token_start'], j['token_end']+1, 1):

                        if j['label'] in list_label:

                            if ner_tags[x] == 'O':
                                ner_tags[x] = j['label']
                            else:
                                # Commenter la ligne et mettre pass si on veut prendre qu'un label par token
                                # pass
                                ner_tags[x] = '_'.join(sorted(list(set(ner_tags[x].split('_')+[j['label']]))))
            
            dict_out.append({
                'id': i['id'],
                'document_id': i['document_id'],
                "ner_tags": ner_tags,
                "tokens": i['tokens'],
            })
        
        return dict_out

    def _generate_examples(self, split):

        ds = load_dataset("bigbio/quaero", f"quaero_{self.config.name}_source")[split]

        ds = self.convert_to_hf_format(
            self.convert_to_prodigy(ds),
            _LABELS_BASE,
        )

        for d in ds:
            yield d["id"], d