Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
pdf-layout-chinese: A Chinese document layout PDF dataset
介绍
pdf-layout-chinese是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label:
正文 | 标题 | 图片 | 图片标题 | 表格 | 表格标题 | 页眉 | 页脚 | 注释 | 公式 |
---|---|---|---|---|---|---|---|---|---|
Text | Title | Figure | Figure caption | Table | Table caption | Header | Footer | Reference | Equation |
共包含5000张训练集和1000张验证集,分别在train和val目录下。每张图片对应一个同名的标注文件(.json)。
样例展示:
标注格式
使用的标注工具是labelme,所以标注格式和labelme格式一致。这里说明一下比较重要的字段。
"shapes": shapes字段是一个list,里面有多个dict,每个dict代表一个标注实例。
"labels": 类别。
"points": 实例标注。因为我们的标注是Polygon形式,所以points里的坐标数量可能大于4。
"shape_type": "polygon"
"imagePath": 图片路径/名
"imageHeight": 高
"imageWidth": 宽
展示一个完整的标注样例:
{
"version":"4.5.6",
"flags":{},
"shapes":[
{
"label":"Title",
"points":[
[
553.1111111111111,
166.59259259259258
],
[
553.1111111111111,
198.59259259259258
],
[
686.1111111111111,
198.59259259259258
],
[
686.1111111111111,
166.59259259259258
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
},
{
"label":"Text",
"points":[
[
250.5925925925925,
298.0740740740741
],
[
250.5925925925925,
345.0740740740741
],
[
188.5925925925925,
345.0740740740741
],
[
188.5925925925925,
410.0740740740741
],
[
188.5925925925925,
456.0740740740741
],
[
324.5925925925925,
456.0740740740741
],
[
324.5925925925925,
410.0740740740741
],
[
1051.5925925925926,
410.0740740740741
],
[
1051.5925925925926,
345.0740740740741
],
[
1052.5925925925926,
345.0740740740741
],
[
1052.5925925925926,
298.0740740740741
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
},
{
"label":"Footer",
"points":[
[
1033.7407407407406,
1634.5185185185185
],
[
1033.7407407407406,
1646.5185185185185
],
[
1052.7407407407406,
1646.5185185185185
],
[
1052.7407407407406,
1634.5185185185185
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
}
],
"imagePath":"val_0031.jpg",
"imageData":null,
"imageHeight":1754,
"imageWidth":1240
}
转coco格式
执行命令:
# train
python3 labelme2coco.py train train_save_path --labels labels.txt
# val
python3 labelme2coco.py val val_save_path --labels labels.txt
转换结果保存在train_save_path/val_save_path目录下。
labelme2coco.py取自labelme,更多信息请参考labelme官方项目
- Downloads last month
- 45