results
dict | group_subtasks
dict | configs
dict | versions
dict | n-shot
dict | higher_is_better
dict | n-samples
dict | config
dict | git_hash
null | date
float64 1.73B
1.73B
| pretty_env_info
stringclasses 1
value | transformers_version
stringclasses 1
value | upper_git_hash
null | tokenizer_pad_token
sequencelengths 2
2
| tokenizer_eos_token
sequencelengths 2
2
| tokenizer_bos_token
sequencelengths 2
2
| eot_token_id
int64 0
0
| max_length
int64 2.05k
2.05k
| task_hashes
dict | model_source
stringclasses 1
value | model_name
stringclasses 1
value | model_name_sanitized
stringclasses 1
value | system_instruction
null | system_instruction_sha
null | fewshot_as_multiturn
bool 1
class | chat_template
null | chat_template_sha
null | start_time
float64 2.61k
3.06k
| end_time
float64 2.92k
3.37k
| total_evaluation_time_seconds
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{
"hellaswag": {
"alias": "hellaswag",
"acc,none": 0.28719378609838675,
"acc_stderr,none": 0.004515280911468785,
"acc_norm,none": 0.3082055367456682,
"acc_norm_stderr,none": 0.004608082815535459
}
} | {
"hellaswag": []
} | {
"hellaswag": {
"task": "hellaswag",
"tag": [
"multiple_choice"
],
"dataset_path": "hellaswag",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"validation_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "{{query}}",
"doc_to_target": "{{label}}",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1
}
}
} | {
"hellaswag": 1
} | {
"hellaswag": 0
} | {
"hellaswag": {
"acc": true,
"acc_norm": true
}
} | {
"hellaswag": {
"original": 10042,
"effective": 10042
}
} | {
"model": "hf",
"model_args": "pretrained=EleutherAI/pythia-160m,revision=step100000,dtype=float",
"model_num_parameters": 162322944,
"model_dtype": "torch.float32",
"model_revision": "step100000",
"model_sha": "4081105d3b42adff0a82b8669cae69ed88dfbd38",
"batch_size": "auto:4",
"batch_sizes": [
64,
64,
64,
64,
64
],
"device": "cuda",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
} | null | 1,729,253,122.804515 | PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.1.85+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
Stepping: 0
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB (1 instance)
L1i cache: 32 KiB (1 instance)
L2 cache: 256 KiB (1 instance)
L3 cache: 55 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled)
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] optree==0.13.0
[pip3] torch==2.4.1+cu121
[pip3] torchaudio==2.4.1+cu121
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.19.1+cu121
[conda] Could not collect | 4.44.2 | null | [
"<|endoftext|>",
"0"
] | [
"<|endoftext|>",
"0"
] | [
"<|endoftext|>",
"0"
] | 0 | 2,048 | {
"hellaswag": "edcc7edd27a555d3f7cbca0641152b2c5e4eb6eb79c5e62d7fe5887f47814323"
} | hf | EleutherAI/pythia-160m | EleutherAI__pythia-160m | null | null | false | null | null | 2,612.058862 | 2,922.27257 | 310.21370772399996 |
{
"hellaswag": {
"alias": "hellaswag",
"acc,none": 0.28719378609838675,
"acc_stderr,none": 0.004515280911468785,
"acc_norm,none": 0.3082055367456682,
"acc_norm_stderr,none": 0.004608082815535459
}
} | {
"hellaswag": []
} | {
"hellaswag": {
"task": "hellaswag",
"tag": [
"multiple_choice"
],
"dataset_path": "hellaswag",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"validation_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "{{query}}",
"doc_to_target": "{{label}}",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1
}
}
} | {
"hellaswag": 1
} | {
"hellaswag": 0
} | {
"hellaswag": {
"acc": true,
"acc_norm": true
}
} | {
"hellaswag": {
"original": 10042,
"effective": 10042
}
} | {
"model": "hf",
"model_args": "pretrained=EleutherAI/pythia-160m,revision=step100000,dtype=float",
"model_num_parameters": 162322944,
"model_dtype": "torch.float32",
"model_revision": "step100000",
"model_sha": "4081105d3b42adff0a82b8669cae69ed88dfbd38",
"batch_size": "auto:4",
"batch_sizes": [
64,
64,
64,
64,
64
],
"device": "cuda",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
} | null | 1,729,253,570.224266 | PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.1.85+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
Stepping: 0
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB (1 instance)
L1i cache: 32 KiB (1 instance)
L2 cache: 256 KiB (1 instance)
L3 cache: 55 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled)
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] optree==0.13.0
[pip3] torch==2.4.1+cu121
[pip3] torchaudio==2.4.1+cu121
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.19.1+cu121
[conda] Could not collect | 4.44.2 | null | [
"<|endoftext|>",
"0"
] | [
"<|endoftext|>",
"0"
] | [
"<|endoftext|>",
"0"
] | 0 | 2,048 | {
"hellaswag": "edcc7edd27a555d3f7cbca0641152b2c5e4eb6eb79c5e62d7fe5887f47814323"
} | hf | EleutherAI/pythia-160m | EleutherAI__pythia-160m | null | null | false | null | null | 3,058.06088 | 3,372.364999 | 314.3041183739997 |
No dataset card yet
New: Create and edit this dataset card directly on the website!
Contribute a Dataset Card- Downloads last month
- 3