Datasets:
File size: 20,133 Bytes
d761e7b f14b8b8 d761e7b f14b8b8 d761e7b f14b8b8 07d5782 d761e7b 07d5782 d761e7b 07d5782 2f8afd8 f14b8b8 d761e7b 2f8afd8 d761e7b 07d5782 d761e7b 2f8afd8 445b5fe 2f8afd8 d761e7b 2f8afd8 07d5782 d761e7b 07d5782 d761e7b 07d5782 9833085 2f8afd8 d761e7b 2f8afd8 07d5782 d761e7b 07d5782 d761e7b 07d5782 d761e7b 2f8afd8 d761e7b 2f8afd8 07d5782 d761e7b 07d5782 d761e7b 07d5782 d761e7b 2f8afd8 445b5fe 9833085 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 92d4a4a d761e7b 2f8afd8 d761e7b feb61bb d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b 2f8afd8 d761e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets: []
task_categories:
- token-classification
- text-classification
task_ids:
- named-entity-recognition
- multi-class-classification
pretty_name: ScienceIE is a dataset for the SemEval task of extracting key phrases
and relations between them from scientific documents
tags:
- research papers
- scientific papers
dataset_info:
- config_name: ner
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: tags
sequence:
class_label:
names:
'0': O
'1': B-Material
'2': I-Material
'3': B-Process
'4': I-Process
'5': B-Task
'6': I-Task
splits:
- name: train
num_bytes: 1185658
num_examples: 2388
- name: validation
num_bytes: 204095
num_examples: 400
- name: test
num_bytes: 399069
num_examples: 838
download_size: 13704567
dataset_size: 1788822
- config_name: re
features:
- name: id
dtype: string
- name: tokens
dtype: string
- name: arg1_start
dtype: int32
- name: arg1_end
dtype: int32
- name: arg1_type
dtype: string
- name: arg2_start
dtype: int32
- name: arg2_end
dtype: int32
- name: arg2_type
dtype: string
- name: relation
dtype:
class_label:
names:
'0': O
'1': Synonym-of
'2': Hyponym-of
splits:
- name: train
num_bytes: 11737101
num_examples: 24556
- name: validation
num_bytes: 2347796
num_examples: 4838
- name: test
num_bytes: 2835275
num_examples: 6618
download_size: 13704567
dataset_size: 16920172
- config_name: science_ie
features:
- name: id
dtype: string
- name: text
dtype: string
- name: keyphrases
list:
- name: id
dtype: string
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype:
class_label:
names:
'0': Material
'1': Process
'2': Task
- name: type_
dtype: string
- name: relations
list:
- name: arg1
dtype: string
- name: arg2
dtype: string
- name: relation
dtype:
class_label:
names:
'0': O
'1': Synonym-of
'2': Hyponym-of
- name: relation_
dtype: string
splits:
- name: train
num_bytes: 640060
num_examples: 350
- name: validation
num_bytes: 112588
num_examples: 50
- name: test
num_bytes: 206857
num_examples: 100
download_size: 441167
dataset_size: 959505
- config_name: subtask_a
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: tags
sequence:
class_label:
names:
'0': O
'1': B
'2': I
splits:
- name: train
num_bytes: 1185658
num_examples: 2388
- name: validation
num_bytes: 204095
num_examples: 400
- name: test
num_bytes: 399069
num_examples: 838
download_size: 384454
dataset_size: 1788822
- config_name: subtask_b
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: tags
sequence:
class_label:
names:
'0': O
'1': M
'2': P
'3': T
splits:
- name: train
num_bytes: 1185658
num_examples: 2388
- name: validation
num_bytes: 204095
num_examples: 400
- name: test
num_bytes: 399069
num_examples: 838
download_size: 13704567
dataset_size: 1788822
- config_name: subtask_c
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: tags
sequence:
sequence:
class_label:
names:
'0': O
'1': S
'2': H
splits:
- name: train
num_bytes: 20102706
num_examples: 2388
- name: validation
num_bytes: 3575511
num_examples: 400
- name: test
num_bytes: 6431513
num_examples: 838
download_size: 13704567
dataset_size: 30109730
configs:
- config_name: science_ie
data_files:
- split: train
path: science_ie/train-*
- split: validation
path: science_ie/validation-*
- split: test
path: science_ie/test-*
default: true
- config_name: subtask_a
data_files:
- split: train
path: subtask_a/train-*
- split: validation
path: subtask_a/validation-*
- split: test
path: subtask_a/test-*
---
# Dataset Card for ScienceIE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://scienceie.github.io/index.html](https://scienceie.github.io/index.html)
- **Repository:** [https://github.com/ScienceIE/scienceie.github.io](https://github.com/ScienceIE/scienceie.github.io)
- **Paper:** [SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications](https://arxiv.org/abs/1704.02853)
- **Leaderboard:** [https://competitions.codalab.org/competitions/15898](https://competitions.codalab.org/competitions/15898)
### Dataset Summary
ScienceIE is a dataset for the SemEval task of extracting key phrases and relations between them from scientific documents.
A corpus for the task was built from ScienceDirect open access publications and was available freely for participants, without the need to sign a copyright agreement. Each data instance consists of one paragraph of text, drawn from a scientific paper.
Publications were provided in plain text, in addition to xml format, which included the full text of the publication as well as additional metadata. 500 paragraphs from journal articles evenly distributed among the domains Computer Science, Material Sciences and Physics were selected.
The training data part of the corpus consists of 350 documents, 50 for development and 100 for testing. This is similar to the pilot task described in Section 5, for which 144 articles were used for training, 40 for development and for 100 testing.
There are three subtasks:
- Subtask (A): Identification of keyphrases
- Given a scientific publication, the goal of this task is to identify all the keyphrases in the document.
- Subtask (B): Classification of identified keyphrases
- In this task, each keyphrase needs to be labelled by one of three types: (i) PROCESS, (ii) TASK, and (iii) MATERIAL.
- PROCESS: Keyphrases relating to some scientific model, algorithm or process should be labelled by PROCESS.
- TASK: Keyphrases those denote the application, end goal, problem, task should be labelled by TASK.
- MATERIAL: MATERIAL keyphrases identify the resources used in the paper.
- Subtask (C): Extraction of relationships between two identified keyphrases
- Every pair of keyphrases need to be labelled by one of three types: (i) HYPONYM-OF, (ii) SYNONYM-OF, and (iii) NONE.
- HYPONYM-OF: The relationship between two keyphrases A and B is HYPONYM-OF if semantic field of A is included within that of B. One example is Red HYPONYM-OF Color.
- SYNONYM-OF: The relationship between two keyphrases A and B is SYNONYM-OF if they both denote the same semantic field, for example Machine Learning SYNONYM-OF ML.
Note: The default config `science_ie` converts the original .txt & .ann files to a dictionary format that is easier to use.
For every other configuration the documents were split into sentences using spaCy, resulting in a 2388, 400, 838 split. The `id` consists of the document id and the example index within the document separated by an underscore, e.g. `S0375960115004120_1`. This should enable you to reconstruct the documents from the sentences.
### Supported Tasks and Leaderboards
- **Tasks:** Key phrase extraction and relation extraction in scientific documents
- **Leaderboards:** [https://competitions.codalab.org/competitions/15898](https://competitions.codalab.org/competitions/15898)
### Languages
The language in the dataset is English.
## Dataset Structure
### Data Instances
#### science_ie
An example of "train" looks as follows:
```json
{
"id": "S221266781300018X",
"text": "Amodel are proposed for modeling data-centric Web services which are powered by relational databases and interact with users according to logical formulas specifying input constraints, control-flow constraints and state/output/action rules. The Linear Temporal First-Order Logic (LTL-FO) formulas over inputs, states, outputs and actions are used to express the properties to be verified.We have proven that automatic verification of LTL-FO properties of data-centric Web services under input-bounded constraints is decidable by reducing Web services to data-centric Web applications. Thus, we can verify Web service specifications using existing verifier designed for Web applications.",
"keyphrases": [
{
"id": "T1", "start": 24, "end": 58, "type": 2, "type_": "Task"
},
...,
{"id": "T3", "start": 245, "end": 278, "type": 1, "type_": "Process"},
{"id": "T4", "start": 280, "end": 286, "type": 1, "type_": "Process"},
...
],
"relations": [
{"arg1": "T4", "arg2": "T3", "relation": 1, "relation_": "Synonym-of"},
{"arg1": "T3", "arg2": "T4", "relation": 1, "relation_": "Synonym-of"}
]
}
```
#### subtask_a
An example of "train" looks as follows:
```json
{
"id": "S0375960115004120_1",
"tokens": ["Another", "remarkable", "feature", "of", "the", "quantum", "field", "treatment", "can", "be", "revealed", "from", "the", "investigation", "of", "the", "vacuum", "state", "."],
"tags": [0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0]
}
```
#### subtask_b
An example of "train" looks as follows:
```json
{
"id": "S0375960115004120_2",
"tokens": ["For", "a", "classical", "field", ",", "vacuum", "is", "realized", "by", "simply", "setting", "the", "potential", "to", "zero", "resulting", "in", "an", "unaltered", ",", "free", "evolution", "of", "the", "particle", "'s", "plane", "wave", "(", "|ψI〉=|ψIII〉=|k0", "〉", ")", "."],
"tags": [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]
}
```
#### subtask_c
An example of "train" looks as follows:
```json
{
"id": "S0375960115004120_3",
"tokens": ["In", "the", "quantized", "treatment", ",", "vacuum", "is", "represented", "by", "an", "initial", "Fock", "state", "|n0=0", "〉", "which", "still", "interacts", "with", "the", "particle", "and", "yields", "as", "final", "state", "|ΨIII", "〉", "behind", "the", "field", "region(19)|ΨI〉=|k0〉⊗|0〉⇒|ΨIII〉=∑n=0∞t0n|k−n〉⊗|n", "〉", "with", "a", "photon", "exchange", "probability(20)P0,n=|t0n|2=1n!e−Λ2Λ2n", "The", "particle", "thus", "transfers", "energy", "to", "the", "vacuum", "field", "leading", "to", "a", "Poissonian", "distributed", "final", "photon", "number", "."],
"tags": [[0, 0, ...], [0, 0, ...], ...]
}
```
Note: The tag sequence consists of vectors for each token, that encode what the relationship between that token
and every other token in the sequence is for the first token in each key phrase.
#### ner
An example of "train" looks as follows:
```json
{
"id": "S0375960115004120_4",
"tokens": ["Let", "'s", "consider", ",", "for", "example", ",", "a", "superconducting", "resonant", "circuit", "as", "source", "of", "the", "field", "."],
"tags": [0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0]
}
```
#### re
An example of "train" looks as follows:
```json
{
"id": "S0375960115004120_5",
"tokens": ["In", "the", "quantized", "treatment", ",", "vacuum", "is", "represented", "by", "an", "initial", "Fock", "state", "|n0=0", "〉", "which", "still", "interacts", "with", "the", "particle", "and", "yields", "as", "final", "state", "|ΨIII", "〉", "behind", "the", "field", "region(19)|ΨI〉=|k0〉⊗|0〉⇒|ΨIII〉=∑n=0∞t0n|k−n〉⊗|n", "〉", "with", "a", "photon", "exchange", "probability(20)P0,n=|t0n|2=1n!e−Λ2Λ2n", "The", "particle", "thus", "transfers", "energy", "to", "the", "vacuum", "field", "leading", "to", "a", "Poissonian", "distributed", "final", "photon", "number", "."],
"arg1_start": 2,
"arg1_end": 4,
"arg1_type": "Task",
"arg2_start": 5,
"arg2_end": 6,
"arg2_type": "Material",
"relation": 0
}
```
### Data Fields
#### science_ie
- `id`: the instance id of this document, a `string` feature.
- `text`: the text of this document, a `string` feature.
- `keyphrases`: the list of keyphrases of this document, a `list` of `dict`.
- `id`: the instance id of this keyphrase, a `string` feature.
- `start`: the character offset start of this keyphrase, an `int` feature.
- `end`: the character offset end of this keyphrase, exclusive, an `int` feature.
- `type`: the key phrase type of this keyphrase, a classification label.
- `type_`: the key phrase type of this keyphrase, a `string` feature.
- `relations`: the list of relations of this document, a `list` of `dict`.
- `arg1`: the instance id of the first keyphrase, a `string` feature.
- `arg2`: the instance id of the second keyphrase, a `string` feature.
- `relation`: the relation label of this instance, a classification label.
- `relation_`: the relation label of this instance, a `string` feature.
Keyphrase types:
```json
{"O": 0, "Material": 1, "Process": 2, "Task": 3}
```
Relation types:
```json
{"O": 0, "Synonym-of": 1, "Hyponym-of": 2}
```
#### subtask_a
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `tags`: the list of tags of this sentence marking a token as being outside, at the beginning, or inside a key phrase, a `list` of classification labels.
```json
{"O": 0, "B": 1, "I": 2}
```
#### subtask_b
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `tags`: the list of tags of this sentence marking a token as being outside a key phrase, or being part of a material, process or task, a `list` of classification labels.
```json
{"O": 0, "M": 1, "P": 2, "T": 3}
```
#### subtask_c
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `tags`: a vector for each token, that encodes what the relationship between that token and every other token in the sequence is for the first token in each key phrase, a `list` of a `list` of a classification label.
```json
{"O": 0, "S": 1, "H": 2}
```
#### ner
- `id`: the instance id of this sentence, a `string` feature.
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `tags`: the list of ner tags of this sentence, a `list` of classification labels.
```json
{"O": 0, "B-Material": 1, "I-Material": 2, "B-Process": 3, "I-Process": 4, "B-Task": 5, "I-Task": 6}
```
#### re
- `id`: the instance id of this sentence, a `string` feature.
- `token`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
- `arg1_start`: the 0-based index of the start token of the relation arg1 mention, an `ìnt` feature.
- `arg1_end`: the 0-based index of the end token of the relation arg1 mention, exclusive, an `ìnt` feature.
- `arg1_type`: the key phrase type of the end token of the relation arg1 mention, a `string` feature.
- `arg2_start`: the 0-based index of the start token of the relation arg2 mention, an `ìnt` feature.
- `arg2_end`: the 0-based index of the end token of the relation arg2 mention, exclusive, an `ìnt` feature.
- `arg2_type`: the key phrase type of the relation arg2 mention, a `string` feature.
- `relation`: the relation label of this instance, a classification label.
```json
{"O": 0, "Synonym-of": 1, "Hyponym-of": 2}
```
### Data Splits
| | Train | Dev | Test |
|------------|-------|------|------|
| science_ie | 350 | 50 | 100 |
| subtask_a | 2388 | 400 | 838 |
| subtask_b | 2388 | 400 | 838 |
| subtask_c | 2388 | 400 | 838 |
| ner | 2388 | 400 | 838 |
| re | 24558 | 4838 | 6618 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{DBLP:journals/corr/AugensteinDRVM17,
author = {Isabelle Augenstein and
Mrinal Das and
Sebastian Riedel and
Lakshmi Vikraman and
Andrew McCallum},
title = {SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations
from Scientific Publications},
journal = {CoRR},
volume = {abs/1704.02853},
year = {2017},
url = {http://arxiv.org/abs/1704.02853},
eprinttype = {arXiv},
eprint = {1704.02853},
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
biburl = {https://dblp.org/rec/journals/corr/AugensteinDRVM17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset. |