Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
License:
File size: 7,343 Bytes
de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb 3b2296a de5ccdb c5df62f de5ccdb c5df62f 0e13bee c5df62f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
language:
- en
task_categories:
- text-classification
pretty_name: MedDistant19
dataset_info:
features:
- name: text
dtype: string
- name: h
struct:
- name: id
dtype: string
- name: pos
list: int32
- name: name
dtype: string
- name: t
struct:
- name: id
dtype: string
- name: pos
list: int32
- name: name
dtype: string
- name: relation
dtype:
class_label:
names:
'0': NA
'1': active_ingredient_of
'2': associated_finding_of
'3': associated_morphology_of
'4': causative_agent_of
'5': cause_of
'6': component_of
'7': direct_device_of
'8': direct_morphology_of
'9': direct_procedure_site_of
'10': direct_substance_of
'11': finding_site_of
'12': focus_of
'13': indirect_procedure_site_of
'14': interpretation_of
'15': interprets
'16': is_modification_of
'17': method_of
'18': occurs_after
'19': procedure_site_of
'20': uses_device
'21': uses_substance
splits:
- name: train
num_bytes: 114832958
num_examples: 450071
- name: validation
num_bytes: 10158868
num_examples: 39434
- name: test
num_bytes: 23816522
num_examples: 91568
download_size: 85782402
dataset_size: 148808348
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- medical
---
# Dataset Card for MedDistant19
## Dataset Description
- **Repository:** https://github.com/suamin/MedDistant19
- **Paper:** https://aclanthology.org/2022.coling-1.198/
#### Dataset Summary
MedDistant19 is a more accurate benchmark for broad-coverage distantly supervised biomedical relation extraction that addresses these shortcomings and is obtained by aligning the MEDLINE abstracts with the widely used SNOMED Clinical Terms knowledge base.
For more details, please refer to the paper: https://aclanthology.org/2022.coling-1.198/
**Before Downloading**: To use this data, you must have signed the UMLS agreement. The UMLS agreement requires those who use the UMLS to file a brief report once a year to
summarize their use of the UMLS. It also requires the acknowledgment that the UMLS contains copyrighted material and that those copyright restrictions be respected.
The UMLS agreement requires users to agree to obtain agreements for EACH copyrighted source prior to its use within a commercial or production application. See https://www.nlm.nih.gov/databases/umls.html
### Languages
The language in the dataset is English.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
### Data Instances
An example of 'train' looks as follow:
```json
{
'text': 'In spite of multiple treatment regimens consisting of surgical resection , radiation therapy , and multi-agent chemotherapy , the prognosis is very poor .',
'h': {
'id': 'C0015252',
'start': 54,
'end': 72,
'name': 'surgical resection'
},
't': {
'id': 'C0033325',
'start': 130,
'end': 139,
'name': 'prognosis'
},
'relation': 0
}
```
### Data Fields
- `text`: the text of this example, a `string` feature.
- `h`: head entity
- `id`: identifier of the head entity, a `string` feature.
- `start`: character off start of the head entity, a `int32` feature.
- `end`: character off end of the head entity, a `int32` feature.
- `name`: head entity text, a `string` feature.
- `t`: tail entity
- `id`: identifier of the tail entity, a `string` feature.
- `start`: character off start of the tail entity, a `int32` feature.
- `end`: character off end of the tail entity, a `int32` feature.
- `name`: tail entity text, a `string` feature.
- `relation`: a class label.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```tex
@inproceedings{amin-etal-2022-meddistant19,
title = "{M}ed{D}istant19: Towards an Accurate Benchmark for Broad-Coverage Biomedical Relation Extraction",
author = "Amin, Saadullah and Minervini, Pasquale and Chang, David and Stenetorp, Pontus and Neumann, G{\"u}nter",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.198",
pages = "2259--2277",
}
```
**APA:**
Amin, S., Minervini, P., Chang, D., Stenetorp, P., & Neumann, G. (2022). Meddistant19: towards an accurate benchmark for broad-coverage biomedical relation extraction. arXiv preprint arXiv:2204.04779.
## Dataset Card Authors
[@phucdev](https://github.com/phucdev)
## Dataset Card Contact
[@phucdev](https://github.com/phucdev) |