Datasets:

ArXiv:
DOI:
License:
File size: 11,035 Bytes
bcb4da6
 
 
df79dfd
 
 
 
bcb4da6
7678e02
 
2575255
 
2bec902
7678e02
bcb4da6
a044ed3
5d9b6e7
 
ebcd326
2575255
 
ef19db1
f66e582
 
 
 
1878ed0
f66e582
 
 
 
 
1878ed0
82a33c2
5d9b6e7
e43dc12
 
 
 
 
 
 
 
 
 
380a774
f21480e
067e314
2975c9b
1d6c0f4
2975c9b
 
f66e582
2975c9b
0642cda
f21480e
2975c9b
 
bcb4da6
2975c9b
bcb4da6
0642cda
2975c9b
bcb4da6
2bec902
2975c9b
bcb4da6
0642cda
2975c9b
 
 
 
bcb4da6
2bec902
 
 
 
0e5daba
ec78073
bcb4da6
ef19db1
2aaf1b8
3aaa040
986fa85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb4da6
29837db
2975c9b
bcb4da6
 
485d899
 
bcb4da6
 
 
 
 
 
485d899
 
 
 
 
 
 
 
bcb4da6
 
 
485d899
 
 
 
 
 
 
 
 
 
 
 
eb9a80f
485d899
 
0e5daba
bcb4da6
29837db
 
0e5daba
bcb4da6
485d899
 
bcb4da6
 
 
 
485d899
 
bcb4da6
2975c9b
485d899
bcb4da6
 
485d899
 
 
bcb4da6
 
485d899
 
bcb4da6
 
eb9a80f
485d899
 
d00f8a1
bcb4da6
df79dfd
 
 
f260ed0
 
 
 
 
 
 
df79dfd
 
c1dfa5e
 
df79dfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
task_categories:
- audio-classification
license: cc
tags:
- bird classification
- passive acoustic monitoring
---
## Dataset Description

- **Repository:** [https://github.com/DBD-research-group/GADME](https://github.com/DBD-research-group/BirdSet)
- **Paper:** [GADME](https://arxiv.org/abs/2403.10380)
- **Point of Contact:** [Lukas Rauch](mailto:lukas.rauch@uni-kassel.de)

### Datasets
We present the BirdSet benchmark that covers a comprehensive range of (multi-label and multi-class) classification datasets in avian bioacoustics. 
We offer a static set of evaluation datasets and a varied collection of training datasets, enabling the application of diverse methodologies.

We have a complementary code base: https://github.com/DBD-research-group/BirdSet
and a complementary paper (work in progress): https://arxiv.org/abs/2403.10380


|                                | train   |    test    | test_5s |  size (GB) |   #classes   |
|--------------------------------|--------:|-----------:|--------:|-----------:|-------------:|
| [PER][1] (Amazon Basin)        |  16,802 |     14,798 |  15,120 |   10.5     |     132      |
| [NES][2] (Colombia Costa Rica) |  16,117 |      6,952 |  24,480 |   14.2     |      89      |
| [UHH][3] (Hawaiian Islands)    |  3,626  |     59,583 |  36,637 |   4.92     | 25 tr, 27 te |
| [HSN][4] (high_sierras)        |  5,460  |     10,296 |  12,000 |   5.92     |      21      |
| [NBP][5] (NIPS4BPlus)          |  24,327 |      5,493 |     563 |   29.9     |      51      |
| [POW][6] (Powdermill Nature)   |  14,911 |     16,052 |   4,560 |   15.7     |      48      |
| [SSW][7] (Sapsucker Woods)     |  28,403 |     50,760 |  205,200|   35.2     |      81      |
| [SNE][8] (Sierra Nevada)       |  19,390 |     20,147 |  23,756 |   20.8     |      56      |
| [XCM][9] (Xenocanto Subset M)  |  89,798 |       x    |     x   |   89.3     |   409 (411)  |
| [XCL][10] (Xenocanto Complete) |  528,434|       x    |     x   |   484      |      9,735   |

[1]:  https://zenodo.org/records/7079124
[2]:  https://zenodo.org/records/7525349
[3]:  https://zenodo.org/records/7078499
[4]:  https://zenodo.org/records/7525805
[5]:  https://github.com/fbravosanchez/NIPS4Bplus
[6]:  https://zenodo.org/records/4656848
[7]:  https://zenodo.org/records/7018484
[8]:  https://zenodo.org/records/7050014
[9]:  https://xeno-canto.org/
[10]: https://xeno-canto.org

- We assemble a training dataset for each test dataset that is a subset of a complete Xeno-Canto (XC) snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
- The focal training datasets or soundscape test datasets components can be individually accessed using the identifiers **NAME_xc** and **NAME_scape**, respectively (e.g., **HSN_xc** for the focal part and **HSN_scape** for the soundscape).
- We use the .ogg format for every recording and a sampling rate of 32 kHz.
- Each sample in the training dataset is a recording that may contain more than one vocalization of the corresponding bird species.
- Each recording in the training datasets has a unique recordist and the corresponding license from XC. We omit all recordings from XC that are CC-ND.
- The bird species are translated to ebird_codes
- Snapshot date of XC: 03/10/2024

**Train**
- Exclusively using focal audio data from XC with quality ratings A, B, C and excluding all recordings that are CC-ND.
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
- We transform the scientific names of the birds into the corresponding ebird_code label. 
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
- We provide the full recordings from XC. These can generate multiple samples from a single instance.

**Test_5s**
- Task: Multilabel ("ebird_code_multilabel")
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
- Each recording is segmented into 5-second intervals where each ground truth bird vocalization is assigned to. 
- This contains segments without any labels which results in a [0] vector.

**Test**
- Task: Multiclass ("ebird_code")
- Only soundscape data sourced from Zenodo.
- We provide the full recording with the complete label set and specified bounding boxes.
- This dataset excludes recordings that do not contain bird calls ("no_call").

### Quick Use
- For multi-label evaluation with a segment-based evaluation use the test_5s column for testing.
- You could only load the first 5 seconds or a given event per recording to quickly create a training dataset.
- We recommend to start with HSN. It is a medium size dataset with a low number of overlaps within a segment

### Metadata

|                        | format                                                 |    description           | 
|------------------------|-------------------------------------------------------:|-------------------------:|
| audio                  |  Audio(sampling_rate=32_000, mono=True, decode=False)  | audio object from hf                         |  
| filepath               |  Value("string")                                       | relative path where the recording is stored                          |  
| start_time             |  Value("float64")                                      | only testdata: start time of a vocalization in s  | 
| end_time               |  Value("float64")                                      | only testdata: end time of a vocalzation in s | 
| low_freq               |  Value("int64")                                        | only testdata: low frequency bound for a vocalization in kHz                        |     
| high_freq              |  Value("int64")                                        | only testdata: high frequency bound for a vocalization in kHz                  |   
| ebird_code             |  ClassLabel(names=class_list)                          | assigned species label                   |  
| ebird_code_secondary   |  Sequence(datasets.Value("string"))                    | only traindata: possible secondary species in a recording |
| ebird_code_multilabel  |  Sequence(datasets.ClassLabel(names=class_list))       | assigned species label in a multilabel format                      |  
| call_type              |  Sequence(datasets.Value("string"))                    | only traindata: type of bird vocalization                        |     
| sex                    |  Value("string")                                       | only traindata: sex of bird species                        |    
| lat                    |  Value("float64")                                      | latitude of vocalization/recording in WGS84                       |     
| long                   |  Value("float64")                                      | lontitude of vocalization/recording in WGS84                         |   
| length                 |  Value("int64")                                        | length of the file in s                        |     
| microphone             |  Value("string")                                       | soundscape or focal recording with the microphone string                       |    
| license                |  Value("string")                                       | license of the recording                        |     
| source                 |  Value("string")                                       | source of the recording                        |    
| local_time             |  Value("string")                                       | local time of the recording                        |    
| detected_events        |  Sequence(datasets.Sequence(datasets.Value("float64")))| only traindata: detected audio events in a recording with bambird, tuples of start/end time                         |    
| event_cluster          |  Sequence(datasets.Value("int64"))                     | only traindata: detected audio events assigned to a cluster with bambird                        |    
| peaks                  |  Sequence(datasets.Value("float64"))                   | only traindata: peak event detected with scipy peak detection                        |     
| quality                |  Value("string")                                       | only traindata: recording quality of the recording (A,B,C)                        |     
| recordist              |  Value("string")                                       | only traindata: recordist of the recording                        |   

#### Example Metadata Train

```python
{'audio': {'path': '.ogg',
  'array': array([ 0.0008485 ,  0.00128899, -0.00317163, ...,  0.00228528,
          0.00270796, -0.00120562]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': None,
 'end_time': None,
 'low_freq': None,
 'high_freq': None,
 'ebird_code': 0,
 'ebird_code_multilabel': [0],
 'ebird_code_secondary': ['plaant1', 'blfnun1', 'butwoo1', 'whtdov', 'undtin1', 'gryhaw3'],
 'call_type': 'song',
 'sex': 'uncertain',
 'lat': -16.0538,
 'long': -49.604,
 'length': 46,
 'microphone': 'focal',
 'license': '//creativecommons.org/licenses/by-nc-sa/4.0/',
 'source': 'xenocanto',
 'local_time': '18:37',
 'detected_events': [[0.736, 1.824],
  [9.936, 10.944],
  [13.872, 15.552],
  [19.552, 20.752],
  [24.816, 25.968],
  [26.528, 32.16],
  [36.112, 37.808],
  [37.792, 38.88],
  [40.048, 40.8],
  [44.432, 45.616]],
 'event_cluster': [0, 0, 0, 0, 0, -1, 0, 0, -1, 0],
 'peaks': [14.76479119037789, 41.16993396760847],
 'quality': 'A',
 'recordist': '...'}
```

#### Example Metadata Test5s

```python
{'audio': {'path': '.ogg',
  'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
         -0.01533066, -0.0141047 ]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': 0.0,
 'end_time': 5.0,
 'low_freq': 0,
 'high_freq': 3098,
 'ebird_code': None,
 'ebird_code_multilabel': [1, 10],
 'ebird_code_secondary': None,
 'call_type': None,
 'sex': None,
 'lat': 5.59,
 'long': -75.85,
 'length': None,
 'microphone': 'Soundscape',
 'license': 'Creative Commons Attribution 4.0 International Public License',
 'source': 'https://zenodo.org/record/7525349',
 'local_time': '4:30:29',
 'detected_events': None,
 'event_cluster': None,
 'peaks': None,
 'quality': None,
 'recordist': None}
```

### Citation Information

```
@misc{birdset,
      title={BirdSet: A Multi-Task Benchmark for Classification in Avian Bioacoustics}, 
      author={Lukas Rauch and Raphael Schwinger and Moritz Wirth and René Heinrich and Jonas Lange and Stefan Kahl and Bernhard Sick and Sven Tomforde and Christoph Scholz},
      year={2024},
      eprint={2403.10380},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

Note that each test subset in the BirdSet dataset has its own citation. Please see the source to see
the correct citation for each contained dataset. Each file in the training dataset also has its own recordist noted. The licenses can be found in the metadata. 
```