Datasets:

ArXiv:
DOI:
License:
lrauch commited on
Commit
2975c9b
1 Parent(s): f66e582

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -44
README.md CHANGED
@@ -41,62 +41,62 @@ We offer a static set of evaluation datasets and a varied collection of training
41
  [10]: https://xeno-canto.org
42
 
43
  - We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
 
44
  - Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species.
45
- - We omit all recordings from XC that are CC-ND.
 
46
  - Snapshot date of XC: 03/10/2024
47
- -
48
  ##### Train
49
  - Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
50
- - Each dataset is tailored for specific target species identified in soundscape files.
 
51
  - We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
52
- - We provide the full recordings from XC! These can generate multiple samples from a single instance.
53
-
54
- ##### Test
55
- - Only soundscape data sourced from Zenodo.
56
- - We provide the full recording with the complete label set and specified bounding boxes.
57
- - This dataset excludes recordings that do not contain bird calls ("no_call").
58
- - Task: Multiclass ("ebird_code")
59
 
60
  ##### Test_5s
 
61
  - Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
62
  - Each recording is segmented into 5-second intervals without overlaps.
63
- - This contains the "no_call" class.
64
- - Task: Multilabel ("ebird_code_multilabel")
65
 
66
- #### Subsets
67
-
68
- Numbers need to be updated
 
 
69
 
70
 
71
- #### FEATURES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
- ```python
74
- {
75
- "audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=True),
76
- "filepath": datasets.Value("string"),
77
- "start_time": datasets.Value("float64"), # can be changed to timestamp later
78
- "end_time": datasets.Value("float64"),
79
- "low_freq": datasets.Value("int64"),
80
- "high_freq": datasets.Value("int64"),
81
- "ebird_code": datasets.ClassLabel(names=class_list),
82
- "ebird_code_multilabel": datasets.Sequence(datasets.ClassLabel(names=class_list)),
83
- "ebird_code_secondary": datasets.Sequence(datasets.Value("string")),
84
- "call_type": datasets.Value("string"),
85
- "sex": datasets.Value("string"),
86
- "lat": datasets.Value("float64"),
87
- "long": datasets.Value("float64"),
88
- "length": datasets.Value("int64"),
89
- "microphone": datasets.Value("string"),
90
- "license": datasets.Value("string"),
91
- "source": datasets.Value("string"),
92
- "local_time": datasets.Value("string"),
93
- "detected_events": datasets.Sequence(datasets.Sequence(datasets.Value("float64"))),
94
- "event_cluster": datasets.Sequence(datasets.Value("int64")),
95
- "peaks": datasets.Sequence(datasets.Value("float64")),
96
- "quality": datasets.Value("string"),
97
- "recordist": datasets.Value("string"),
98
- })
99
  ```
 
 
100
  ```python
101
  EXAMPLE TRAIN
102
  {'audio': {'path': '.ogg',
@@ -135,7 +135,8 @@ EXAMPLE TRAIN
135
  'quality': 'A',
136
  'recordist': '...'}
137
 
138
- EXAMPLE TEST_5S
 
139
  {'audio': {'path': '.ogg',
140
  'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
141
  -0.01533066, -0.0141047 ]),
@@ -146,7 +147,7 @@ EXAMPLE TEST_5S
146
  'low_freq': 0,
147
  'high_freq': 3098,
148
  'ebird_code': None,
149
- 'ebird_code_multilabel': [],
150
  'ebird_code_secondary': None,
151
  'call_type': None,
152
  'sex': None,
 
41
  [10]: https://xeno-canto.org
42
 
43
  - We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
44
+ - We use the .ogg format for every recording and a sampling rate of 32 kHz.
45
  - Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species.
46
+ - Each recording in the training datasets has a unique recordist and the corresponding license from XC. We omit all recordings from XC that are CC-ND.
47
+ - The bird species are translated to ebird_codes
48
  - Snapshot date of XC: 03/10/2024
49
+
50
  ##### Train
51
  - Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
52
+ - Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
53
+ - We transform the scientific names of the birds into the corresponding ebird_code label.
54
  - We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
55
+ - We provide the full recordings from XC. These can generate multiple samples from a single instance.
 
 
 
 
 
 
56
 
57
  ##### Test_5s
58
+ - Task: Multilabel ("ebird_code_multilabel")
59
  - Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
60
  - Each recording is segmented into 5-second intervals without overlaps.
61
+ - This contains segments without any labels which results in a [0] vector.
 
62
 
63
+ ##### Test
64
+ - Task: Multiclass ("ebird_code")
65
+ - Only soundscape data sourced from Zenodo.
66
+ - We provide the full recording with the complete label set and specified bounding boxes.
67
+ - This dataset excludes recordings that do not contain bird calls ("no_call").
68
 
69
 
70
+ #### Metadata
71
+
72
+ | | format: datasets. | description |
73
+ |------------------------|---------:----------------------------------------------|-------------------------:|
74
+ | audio | Audio(sampling_rate=32_000, mono=True, decode=True) | xxxxxx |
75
+ | filepath | Value("string") | xxxxxx |
76
+ | start_time | Value("float64") | xxxxxx |
77
+ | end_time | Value("float64") | xxxxxx |
78
+ | low_freq | Value("int64") | xxxxxx |
79
+ | high_freq | Value("int64") | xxxxxx |
80
+ | ebird_code | ClassLabel(names=class_list) | xxxxxx |
81
+ | ebird_code_multilabel | Sequence(datasets.ClassLabel(names=class_list)) | x |
82
+ | call_type | Sequence(datasets.Value("string")) | x |
83
+ | sex | Value("string") | x |
84
+ | lat | Value("float64") | x |
85
+ | long | Value("float64") | x |
86
+ | length | Value("int64") | x |
87
+ | microphone | Value("string") | x |
88
+ | license | Value("string") | x |
89
+ | source | Value("string") | x |
90
+ | local_time | Value("string") | x |
91
+ | detected_events | Sequence(datasets.Sequence(datasets.Value("float64")))| x |
92
+ | event_cluster | Sequence(datasets.Value("int64")) | x |
93
+ | peaks | Sequence(datasets.Value("float64")) | x |
94
+ | quality | Value("string") | x |
95
+ | recordist | Value("string") | x |
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ```
98
+ ##### Example Metadata Train
99
+
100
  ```python
101
  EXAMPLE TRAIN
102
  {'audio': {'path': '.ogg',
 
135
  'quality': 'A',
136
  'recordist': '...'}
137
 
138
+ ##### Example Metadata Test5s
139
+
140
  {'audio': {'path': '.ogg',
141
  'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
142
  -0.01533066, -0.0141047 ]),
 
147
  'low_freq': 0,
148
  'high_freq': 3098,
149
  'ebird_code': None,
150
+ 'ebird_code_multilabel': [1, 10],
151
  'ebird_code_secondary': None,
152
  'call_type': None,
153
  'sex': None,