Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -41,62 +41,62 @@ We offer a static set of evaluation datasets and a varied collection of training
|
|
41 |
[10]: https://xeno-canto.org
|
42 |
|
43 |
- We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
|
|
|
44 |
- Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species.
|
45 |
-
- We omit all recordings from XC that are CC-ND.
|
|
|
46 |
- Snapshot date of XC: 03/10/2024
|
47 |
-
|
48 |
##### Train
|
49 |
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
|
50 |
-
- Each dataset is tailored for specific target species identified in soundscape files.
|
|
|
51 |
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
|
52 |
-
- We provide the full recordings from XC
|
53 |
-
|
54 |
-
##### Test
|
55 |
-
- Only soundscape data sourced from Zenodo.
|
56 |
-
- We provide the full recording with the complete label set and specified bounding boxes.
|
57 |
-
- This dataset excludes recordings that do not contain bird calls ("no_call").
|
58 |
-
- Task: Multiclass ("ebird_code")
|
59 |
|
60 |
##### Test_5s
|
|
|
61 |
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
|
62 |
- Each recording is segmented into 5-second intervals without overlaps.
|
63 |
-
- This contains
|
64 |
-
- Task: Multilabel ("ebird_code_multilabel")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
70 |
|
71 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
```python
|
74 |
-
{
|
75 |
-
"audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=True),
|
76 |
-
"filepath": datasets.Value("string"),
|
77 |
-
"start_time": datasets.Value("float64"), # can be changed to timestamp later
|
78 |
-
"end_time": datasets.Value("float64"),
|
79 |
-
"low_freq": datasets.Value("int64"),
|
80 |
-
"high_freq": datasets.Value("int64"),
|
81 |
-
"ebird_code": datasets.ClassLabel(names=class_list),
|
82 |
-
"ebird_code_multilabel": datasets.Sequence(datasets.ClassLabel(names=class_list)),
|
83 |
-
"ebird_code_secondary": datasets.Sequence(datasets.Value("string")),
|
84 |
-
"call_type": datasets.Value("string"),
|
85 |
-
"sex": datasets.Value("string"),
|
86 |
-
"lat": datasets.Value("float64"),
|
87 |
-
"long": datasets.Value("float64"),
|
88 |
-
"length": datasets.Value("int64"),
|
89 |
-
"microphone": datasets.Value("string"),
|
90 |
-
"license": datasets.Value("string"),
|
91 |
-
"source": datasets.Value("string"),
|
92 |
-
"local_time": datasets.Value("string"),
|
93 |
-
"detected_events": datasets.Sequence(datasets.Sequence(datasets.Value("float64"))),
|
94 |
-
"event_cluster": datasets.Sequence(datasets.Value("int64")),
|
95 |
-
"peaks": datasets.Sequence(datasets.Value("float64")),
|
96 |
-
"quality": datasets.Value("string"),
|
97 |
-
"recordist": datasets.Value("string"),
|
98 |
-
})
|
99 |
```
|
|
|
|
|
100 |
```python
|
101 |
EXAMPLE TRAIN
|
102 |
{'audio': {'path': '.ogg',
|
@@ -135,7 +135,8 @@ EXAMPLE TRAIN
|
|
135 |
'quality': 'A',
|
136 |
'recordist': '...'}
|
137 |
|
138 |
-
|
|
|
139 |
{'audio': {'path': '.ogg',
|
140 |
'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
|
141 |
-0.01533066, -0.0141047 ]),
|
@@ -146,7 +147,7 @@ EXAMPLE TEST_5S
|
|
146 |
'low_freq': 0,
|
147 |
'high_freq': 3098,
|
148 |
'ebird_code': None,
|
149 |
-
'ebird_code_multilabel': [],
|
150 |
'ebird_code_secondary': None,
|
151 |
'call_type': None,
|
152 |
'sex': None,
|
|
|
41 |
[10]: https://xeno-canto.org
|
42 |
|
43 |
- We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
|
44 |
+
- We use the .ogg format for every recording and a sampling rate of 32 kHz.
|
45 |
- Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species.
|
46 |
+
- Each recording in the training datasets has a unique recordist and the corresponding license from XC. We omit all recordings from XC that are CC-ND.
|
47 |
+
- The bird species are translated to ebird_codes
|
48 |
- Snapshot date of XC: 03/10/2024
|
49 |
+
|
50 |
##### Train
|
51 |
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
|
52 |
+
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
|
53 |
+
- We transform the scientific names of the birds into the corresponding ebird_code label.
|
54 |
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
|
55 |
+
- We provide the full recordings from XC. These can generate multiple samples from a single instance.
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
##### Test_5s
|
58 |
+
- Task: Multilabel ("ebird_code_multilabel")
|
59 |
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
|
60 |
- Each recording is segmented into 5-second intervals without overlaps.
|
61 |
+
- This contains segments without any labels which results in a [0] vector.
|
|
|
62 |
|
63 |
+
##### Test
|
64 |
+
- Task: Multiclass ("ebird_code")
|
65 |
+
- Only soundscape data sourced from Zenodo.
|
66 |
+
- We provide the full recording with the complete label set and specified bounding boxes.
|
67 |
+
- This dataset excludes recordings that do not contain bird calls ("no_call").
|
68 |
|
69 |
|
70 |
+
#### Metadata
|
71 |
+
|
72 |
+
| | format: datasets. | description |
|
73 |
+
|------------------------|---------:----------------------------------------------|-------------------------:|
|
74 |
+
| audio | Audio(sampling_rate=32_000, mono=True, decode=True) | xxxxxx |
|
75 |
+
| filepath | Value("string") | xxxxxx |
|
76 |
+
| start_time | Value("float64") | xxxxxx |
|
77 |
+
| end_time | Value("float64") | xxxxxx |
|
78 |
+
| low_freq | Value("int64") | xxxxxx |
|
79 |
+
| high_freq | Value("int64") | xxxxxx |
|
80 |
+
| ebird_code | ClassLabel(names=class_list) | xxxxxx |
|
81 |
+
| ebird_code_multilabel | Sequence(datasets.ClassLabel(names=class_list)) | x |
|
82 |
+
| call_type | Sequence(datasets.Value("string")) | x |
|
83 |
+
| sex | Value("string") | x |
|
84 |
+
| lat | Value("float64") | x |
|
85 |
+
| long | Value("float64") | x |
|
86 |
+
| length | Value("int64") | x |
|
87 |
+
| microphone | Value("string") | x |
|
88 |
+
| license | Value("string") | x |
|
89 |
+
| source | Value("string") | x |
|
90 |
+
| local_time | Value("string") | x |
|
91 |
+
| detected_events | Sequence(datasets.Sequence(datasets.Value("float64")))| x |
|
92 |
+
| event_cluster | Sequence(datasets.Value("int64")) | x |
|
93 |
+
| peaks | Sequence(datasets.Value("float64")) | x |
|
94 |
+
| quality | Value("string") | x |
|
95 |
+
| recordist | Value("string") | x |
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
```
|
98 |
+
##### Example Metadata Train
|
99 |
+
|
100 |
```python
|
101 |
EXAMPLE TRAIN
|
102 |
{'audio': {'path': '.ogg',
|
|
|
135 |
'quality': 'A',
|
136 |
'recordist': '...'}
|
137 |
|
138 |
+
##### Example Metadata Test5s
|
139 |
+
|
140 |
{'audio': {'path': '.ogg',
|
141 |
'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
|
142 |
-0.01533066, -0.0141047 ]),
|
|
|
147 |
'low_freq': 0,
|
148 |
'high_freq': 3098,
|
149 |
'ebird_code': None,
|
150 |
+
'ebird_code_multilabel': [1, 10],
|
151 |
'ebird_code_secondary': None,
|
152 |
'call_type': None,
|
153 |
'sex': None,
|