Datasets:

ArXiv:
DOI:
License:
File size: 9,680 Bytes
bcb4da6
 
 
df79dfd
 
 
 
bcb4da6
7678e02
 
bf6fcec
3f1fa18
2bec902
7678e02
bcb4da6
5d9b6e7
 
 
f66e582
 
 
 
 
 
 
 
 
 
 
 
5d9b6e7
e43dc12
 
 
 
 
 
 
 
 
 
380a774
f66e582
2975c9b
f66e582
2975c9b
 
f66e582
2975c9b
7678e02
bcb4da6
2975c9b
 
bcb4da6
2975c9b
bcb4da6
7678e02
2975c9b
bcb4da6
2bec902
2975c9b
bcb4da6
2975c9b
 
 
 
 
bcb4da6
2bec902
 
 
 
 
2975c9b
bcb4da6
2aaf1b8
 
2975c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb4da6
2975c9b
 
bcb4da6
 
 
485d899
 
bcb4da6
 
 
 
 
 
485d899
 
 
 
 
 
 
 
bcb4da6
 
 
485d899
 
 
 
 
 
 
 
 
 
 
 
eb9a80f
485d899
 
bcb4da6
2975c9b
 
bcb4da6
485d899
 
bcb4da6
 
 
 
485d899
 
bcb4da6
2975c9b
485d899
bcb4da6
 
485d899
 
 
bcb4da6
 
485d899
 
bcb4da6
 
eb9a80f
485d899
 
d00f8a1
bcb4da6
df79dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
task_categories:
- audio-classification
license: cc
tags:
- bird classification
- passive acoustic monitoring
---
## Dataset Description

- **Repository:** [https://github.com/DBD-research-group/GADME](https://github.com/DBD-research-group/GADME)
- **Paper:** [GADME](https://arxiv.org/)
- **Point of Contact:** [Lukas Rauch](mailto:lukas.rauch@uni-kassel.de)

### Datasets
We present the BirdSet benchmark that covers a comprehensive range of classification datasets in avian bioacoustics. 
We offer a static set of evaluation datasets and a varied collection of training datasets, enabling the application of diverse methodologies.

|                                | train   |    test    | test_5s |  size (GB) |   #classes   |
|--------------------------------|--------:|-----------:|--------:|-----------:|-------------:|
| [PER][1] (Amazon Basin)        |  16,802 |     14,798 |  15,120 |   10.5     |     132      |
| [NES][2] (Colombia Costa Rica) |  16,117 |      6,952 |  24,480 |   14.2     |      89      |
| [UHH][3] (Hawaiian Islands)    |  3,626  |     59,583 |  36,637 |   4.92     | 25 tr, 27 te |
| [HSN][4] (high_sierras)        |  5,460  |     10,296 |  12,000 |   5.92     |      21      |
| [NBP][5] (NIPS4BPlus)          |  24,327 |      5,493 |     563 |   29.9     |      51      |
| [POW][6] (Powdermill Nature)   |  14,911 |     16,052 |   4,560 |   15.7     |      48      |
| [SSW][7] (Sapsucker Woods)     |  28,403 |     50,760 |  205,200|   35.2     |      81      |
| [SNE][8] (Sierra Nevada)       |  19,390 |     20,147 |  23,756 |   20.8     |      56      |
| [XCM][9] (Xenocanto Subset M)  |  89,798 |       x    |     x   |   89.3     |      409     |
| [XCL][10](Xenocanto Complete)  |  528,434|       x    |     x   |   484      |      9,734   |

[1]:  https://zenodo.org/records/7079124
[2]:  https://zenodo.org/records/7525349
[3]:  https://zenodo.org/records/7078499
[4]:  https://zenodo.org/records/7525805
[5]:  https://github.com/fbravosanchez/NIPS4Bplus
[6]:  https://zenodo.org/records/4656848
[7]:  https://zenodo.org/records/7018484
[8]:  https://zenodo.org/records/7050014
[9]:  https://xeno-canto.org/
[10]: https://xeno-canto.org

- We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset.
- We use the .ogg format for every recording and a sampling rate of 32 kHz.
- Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species.
- Each recording in the training datasets has a unique recordist and the corresponding license from XC. We omit all recordings from XC that are CC-ND.
- The bird species are translated to ebird_codes
- Snapshot date of XC: 03/10/2024

##### Train
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
- We transform the scientific names of the birds into the corresponding ebird_code label. 
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
- We provide the full recordings from XC. These can generate multiple samples from a single instance.

##### Test_5s
- Task: Multilabel ("ebird_code_multilabel")
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
- Each recording is segmented into 5-second intervals where each ground truth bird vocalization is assigned to. 
- This contains segments without any labels which results in a [0] vector.

##### Test
- Task: Multiclass ("ebird_code")
- Only soundscape data sourced from Zenodo.
- We provide the full recording with the complete label set and specified bounding boxes.
- This dataset excludes recordings that do not contain bird calls ("no_call").

### Quick Use
- For multi-label evaluation with a segment-based evaluation use the test_5s column for testing.
- You could only load the first 5 seconds or a given event per recording to quickly create a training dataset.
- We recommend to start with HSN. It is a medium size dataset with a low number of overlaps within a segment
- 
#### Metadata

|                        | format datasets.                                       |    description           | 
|------------------------|-------------------------------------------------------:|-------------------------:|
| audio                  |  Audio(sampling_rate=32_000, mono=True, decode=True)   |     xxxxxx               |  
| filepath               |  Value("string")                                       |     xxxxxx               |  
| start_time             |  Value("float64")                                      |     xxxxxx               | 
| end_time               |  Value("float64")                                      |     xxxxxx               | 
| low_freq               |  Value("int64")                                        |     xxxxxx               |     
| high_freq              |  Value("int64")                                        |     xxxxxx               |   
| ebird_code             |  ClassLabel(names=class_list)                          |     xxxxxx               |  
| ebird_code_multilabel  |  Sequence(datasets.ClassLabel(names=class_list))       |     x                    |  
| call_type              |  Sequence(datasets.Value("string"))                    |       x                  |     
| sex                    |  Value("string")                                       |       x                  |    
| lat                    |  Value("float64")                                      |       x                  |     
| long                   |  Value("float64")                                      |       x                  |   
| length                 |  Value("int64")                                        |       x                  |     
| microphone             |  Value("string")                                       |       x                  |    
| license                |  Value("string")                                       |       x                  |     
| source                 |  Value("string")                                       |       x                  |    
| local_time             |  Value("string")                                       |       x                  |    
| detected_events        |  Sequence(datasets.Sequence(datasets.Value("float64")))|       x                  |    
| event_cluster          |  Sequence(datasets.Value("int64"))                     |       x                  |    
| peaks                  |  Sequence(datasets.Value("float64"))                   |       x                  |     
| quality                |  Value("string")                                       |       x                  |     
| recordist              |  Value("string")                                       |       x                  |     

##### Example Metadata Train

```python
EXAMPLE TRAIN
{'audio': {'path': '.ogg',
  'array': array([ 0.0008485 ,  0.00128899, -0.00317163, ...,  0.00228528,
          0.00270796, -0.00120562]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': None,
 'end_time': None,
 'low_freq': None,
 'high_freq': None,
 'ebird_code': 0,
 'ebird_code_multilabel': [0],
 'ebird_code_secondary': ['plaant1', 'blfnun1', 'butwoo1', 'whtdov', 'undtin1', 'gryhaw3'],
 'call_type': 'song',
 'sex': 'uncertain',
 'lat': -16.0538,
 'long': -49.604,
 'length': 46,
 'microphone': 'focal',
 'license': '//creativecommons.org/licenses/by-nc-sa/4.0/',
 'source': 'xenocanto',
 'local_time': '18:37',
 'detected_events': [[0.736, 1.824],
  [9.936, 10.944],
  [13.872, 15.552],
  [19.552, 20.752],
  [24.816, 25.968],
  [26.528, 32.16],
  [36.112, 37.808],
  [37.792, 38.88],
  [40.048, 40.8],
  [44.432, 45.616]],
 'event_cluster': [0, 0, 0, 0, 0, -1, 0, 0, -1, 0],
 'peaks': [14.76479119037789, 41.16993396760847],
 'quality': 'A',
 'recordist': '...'}

##### Example Metadata Test5s

{'audio': {'path': '.ogg',
  'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935,
         -0.01533066, -0.0141047 ]),
  'sampling_rate': 32000},
 'filepath': '.ogg',
 'start_time': 0.0,
 'end_time': 5.0,
 'low_freq': 0,
 'high_freq': 3098,
 'ebird_code': None,
 'ebird_code_multilabel': [1, 10],
 'ebird_code_secondary': None,
 'call_type': None,
 'sex': None,
 'lat': 5.59,
 'long': -75.85,
 'length': None,
 'microphone': 'Soundscape',
 'license': 'Creative Commons Attribution 4.0 International Public License',
 'source': 'https://zenodo.org/record/7525349',
 'local_time': '4:30:29',
 'detected_events': None,
 'event_cluster': None,
 'peaks': None,
 'quality': None,
 'recordist': None}
```

### Citation Information

```
@article{gadme,
  author    = {Rauch, Lukas and
               Schwinger, Raphael and
               Wirth, Moritz and
               Heinrich, René and
               Lange, Jonas and
               Kahl, Stefan and
               Sick, Bernhard and
               Tomforde, Sven and
               Scholz, Christoph},
  title     = {GADME: A Benchmark Towards General Avian Diversity Monitoring Evaluation in Deep Bioacoustics,
  journal   = {CoRR},
  volume    = {X},
  year      = {2024},
  url       = {X},
  archivePrefix = {arXiv},
}

Note that each test in GADME dataset has its own citation. Please see the source to see
the correct citation for each contained dataset. Each file in the training dataset also has its own recordist. The licenses can be found in the metadata. 
```