Datasets:
The dataset viewer is not available for this split.
Error code: StreamingRowsError Exception: IndexError Message: list index out of range Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 264, in get_rows_or_raise return get_rows( File "/src/services/worker/src/worker/utils.py", line 205, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 242, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1379, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 233, in __iter__ yield from self.generate_examples_fn(**self.kwargs) File "/tmp/modules-cache/datasets_modules/datasets/CyranoB--polarity/09b42b491d298dbd043c0b1a57d426eaece8edeb7045a6f706687edb78cb6043/polarity.py", line 116, in _generate_examples for path, f in files: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 840, in __iter__ yield from self.generator(*self.args, **self.kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 890, in _iter_from_urlpath compression = _get_extraction_protocol(urlpath, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 391, in _get_extraction_protocol with fsspec.open(urlpath, **(storage_options or {})) as f: File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 439, in open return open_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 194, in __getitem__ out = super().__getitem__(item) IndexError: list index out of range
Need help to make the dataset viewer work? Open a discussion for direct support.
Dataset Card for Amazon Review Polarity
Dataset Summary
The Amazon reviews dataset consists of reviews from amazon. The data span a period of 18 years, including ~35 million reviews up to March 2013. Reviews include product and user information, ratings, and a plaintext review.
Supported Tasks and Leaderboards
text-classification
,sentiment-classification
: The dataset is mainly used for text classification: given the content and the title, predict the correct star rating.
Languages
Mainly English.
Dataset Structure
Data Instances
A typical data point, comprises of a title, a content and the corresponding label.
An example from the AmazonPolarity test set looks as follows:
{
'title':'Great CD',
'content':"My lovely Pat has one of the GREAT voices of her generation. I have listened to this CD for YEARS and I still LOVE IT. When I'm in a good mood it makes me feel better. A bad mood just evaporates like sugar in the rain. This CD just oozes LIFE. Vocals are jusat STUUNNING and lyrics just kill. One of life's hidden gems. This is a desert isle CD in my book. Why she never made it big is just beyond me. Everytime I play this, no matter black, white, young, old, male, female EVERYBODY says one thing ""Who was that singing ?""",
'label':1
}
Data Fields
- 'title': a string containing the title of the review - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'content': a string containing the body of the document - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'label': either 1 (positive) or 0 (negative) rating.
Data Splits
The Amazon reviews polarity dataset is constructed by taking review score 1 and 2 as negative, and 4 and 5 as positive. Samples of score 3 is ignored. Each class has 1,800,000 training samples and 200,000 testing samples.
Dataset Creation
Curation Rationale
The Amazon reviews polarity dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu). It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
[Needs More Information]
Licensing Information
Apache License 2.0
Citation Information
McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics: understanding rating dimensions with review text." In Proceedings of the 7th ACM conference on Recommender systems, pp. 165-172. 2013.
Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)
Contributions
Thanks to @hfawaz for adding this dataset.
- Downloads last month
- 435