Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 12,813 Bytes
5ed446c
 
7e5ffcf
c78e536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5ffcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c78e536
 
 
 
9a0701e
 
 
 
7e5ffcf
 
 
 
41ab282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76dca4
 
 
 
 
 
 
 
 
 
 
 
bc21d11
 
5ed446c
bc21d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32109a2
bc21d11
 
32109a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2ec62
 
32109a2
 
 
 
 
de2ec62
32109a2
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab0d37
de2ec62
5ab0d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32109a2
 
 
 
 
de2ec62
32109a2
 
 
 
 
 
 
 
de2ec62
 
 
 
 
 
 
 
 
 
f7f5f8e
 
 
de2ec62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
---
license: apache-2.0
dataset_info:
- config_name: aya_human_annotated
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  splits:
  - name: test
    num_bytes: 1624958
    num_examples: 1750
  download_size: 974483
  dataset_size: 1624958
- config_name: dolly_human_edited
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  splits:
  - name: test
    num_bytes: 1209511
    num_examples: 1200
  download_size: 599142
  dataset_size: 1209511
- config_name: dolly_machine_translated
  features:
  - name: id
    dtype: int64
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  - name: language
    dtype: string
  - name: script
    dtype: string
  splits:
  - name: test
    num_bytes: 39488955
    num_examples: 23800
  download_size: 20063815
  dataset_size: 39488955
configs:
- config_name: aya_human_annotated
  data_files:
  - split: test
    path: aya_human_annotated/test-*
- config_name: dolly_human_edited
  data_files:
  - split: test
    path: dolly_human_edited/test-*
- config_name: dolly_machine_translated
  data_files:
  - split: test
    path: dolly_machine_translated/test-*
language:
- afr
- sqi
- amh
- ara
- aze
- bel
- ben
- bul
- cat
- ceb
- ces
- kur
- cym
- dan
- deu
- ell
- eng
- epo
- est
- eus
- fin
- fra
- gla
- gle
- glg
- guj
- hat
- hau
- heb
- hin
- hun
- hye
- ibo
- ind
- isl
- ita
- jav
- jpn
- kan
- kat
- kaz
- mon
- khm
- kir
- kor
- lao
- lit
- ltz
- lav
- mal
- mar
- mkd
- mlt
- mri
- mya
- nld
- nor
- nep
- sot
- pus
- pes
- mlg
- pol
- por
- ron
- rus
- sin
- slk
- slv
- smo
- sna
- snd
- som
- spa
- srp
- sun
- swe
- swa
- tam
- tel
- tgk
- tha
- tur
- ukr
- urd
- uzb
- vie
- xho
- yid
- yor
- zho
- msa
- zul
- ace
- bjn
- kas
- kau
- min
- mni
- taq
- nso
language_creators:
- crowdsourced
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Aya Evaluation Suite
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended
task_categories:
- text-generation
---

![Aya Header](https://huggingface.co/datasets/CohereForAI/aya_dataset/resolve/main/aya_header.png)

# Dataset Summary

`Aya Evaluation Suite` contains a total of 25,750 open-ended conversation-style prompts to evaluate multilingual open-ended generation quality.\
To strike a balance between language coverage and the quality that comes with human curation, we create an evaluation suite that includes:
1) human-curated examples in 7 languages (`tur,eng,yor,arb,zho,por,tel`).
2) machine-translations of handpicked examples into 101 languages.
3) human-post-edited translations into 6 languages (`hin,srp,rus,fra,arb,spa`).

---

- **Curated by:** Contributors of [Aya Open Science Intiative](https://aya.for.ai/), professional annotators, and synthetic generation
- **Language(s):** 101 languages
- **License:** [Apache 2.0](https://opensource.org/license/apache-2-0)
- **Aya Datasets Family:**
  | Name | Explanation |
  |------|--------------|
  | [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) | Human-annotated multilingual instruction finetuning dataset, comprising over 204K instances across 65 languages. |
  | [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection) | Created by applying instruction-style templates from fluent speakers to 44 datasets, including translations of 19 instruction-style datasets into 101 languages, providing 513k instances for various tasks.|
  | [aya_evaluation_suite](https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite) | A diverse evaluation set for multilingual open-ended generation, featuring 250 culturally grounded prompts in 7 languages, 200 translated prompts in 24 languages, and human-edited versions selected for cross-cultural relevance from English Dolly in 6 languages.|


# Dataset

The `Aya Evaluation Suite` includes the following subsets:

1. **aya-human-annotated**: 250 original human-written prompts in 7 languages each.
2. **dolly-machine-translated**: 200 human-selected prompts from [databricks-dolly-15k](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm)
, automatically translated with the [NLLB model](https://ai.meta.com/research/no-language-left-behind/) from English into 101 languages (114 dialects in total).
3. **dolly-human-edited**: 200 dolly-machine-translated prompts post-edited by fluent speakers for 6 languages.


## Load with Datasets
To load this dataset consisting of both prompt-completions and demographics data with `datasets`, you'll just need to install Datasets as `pip install datasets --upgrade` and then use the following code:

```python
from datasets import load_dataset

aya_eval = load_dataset("CohereForAI/aya_evaluation_suite", "dataset")
```

## Data Fields

- `id`: Unique id of the data point.
- `inputs`: Prompt or input to the language model.
- `targets`: Completion or output of the language model. (Not applicable for `dolly-human-edited`)
- `language`: The language of the `prompt` and `completion.`
- `script`:  The writing system of the language.

## Data Instances

An example of the `Aya Evaluation Suite` looks as follows:

```json
{
"id": 42,
"prompt": "What day is known as Star Wars Day?",
"completion": "May 4th (May the 4th be with you!)",
"language": "eng",
"script": "Latn",
}
```

## Statistics

The toggled table below lists the breakdown of languages in each subset.

### Languages

<details>
<summary> <b>aya-human-annotated</b> </summary>

  | ISO Code | Language | Resources |
  |----------|----------|---------------|
  | `tel` | Telugu | Low |
  | `yor` | Yorùbá | Low |
  | `arb` | Arabic | High |
  | `tur` | Turkish | High |
  | `por` | Portuguese | High |
  | `zho` | Chinese (Simplified) | High |
  | `eng` | English | High |
  
</details>


<details>
<summary> <b>dolly-machine-translated</b> </summary>
  
  | ISO Code | Language | Resources |
  |----------|----------|-----------|
  |	`ace`  |	Achinese	|	Low	|
  |	`afr`  |	Afrikaans	|	Mid	|
  |	`amh`  |	Amharic	|	Low	|
  |   `ara` (`arb`, `acm`, `acq`, `aeb`, `ajp`, `apc`, `ars`, `ary` & `arz`)  | Arabic (Standard, Gelet Iraqi, Ta'izzi-Adeni, Tunisian, South Levantine, North Levantine, Najdi, Moroccan & Egyptian) | High |
  |	`aze` (`azb` & `azj`) |	Azerbaijani	(South & North) |	Low	|
  |	`bel`  |	Belarusian	|	Mid	|
  |	`ben`  |	Bengali	|	Mid	|
  |	`bjn`  |	Banjar	|	Low	|
  |	`bul`  |	Bulgarian	|	Mid	|
  |	`cat`  |	Catalan	|	High	|
  |	`ceb`  |	Cebuano	|	Mid	|
  |	`ces`  |	Czech	|	High	|
  |	`cym`  |	Welsh	|	Low	|
  |	`dan`  |	Danish	|	Mid	|
  |	`deu`  |	German	|	High	|
  |	`ell`  |	Greek	|	Mid	|
  |	`eng`  |	English	|	High	|
  |	`epo`  |	Esperanto	|	Low	|
  |	`est`  |	Estonian	|	Mid	|
  |	`eus`  |	Basque	|	High	|
  |	`fin`  |	Finnish	|	High	|
  |	`fra`  |	French	|	High	|
  |	`gla`  |	Scottish Gaelic	|	Low	|
  |	`gle`  |	Irish	|	Low	|
  |	`glg`  |	Galician	|	Mid	|
  |	`guj`  |	Gujarati	|	Low	|
  |	`hat`  |	Haitian Creole	|	Low	|
  |	`hau`  |	Hausa	|	Low	|
  |	`heb`  |	Hebrew	|	Mid	|
  |	`hin`  |	Hindi	|	High	|
  |	`hun`  |	Hungarian	|	High	|
  |	`hye`  |	Armenian	|	Low	|
  |	`ibo`  |	Igbo	|	Low	|
  |	`ind`  |	Indonesian	|	Mid	|
  |	`isl`  |	Icelandic	|	Low	|
  |	`ita`  |	Italian	|	High	|
  |	`jav`  |	Javanese	|	Low	|
  |	`jpn`  |	Japanese	|	High	|
  |	`kan`  |	Kannada	|	Low	|
  |	`kas`  |	Kashmiri	|	Low	|
  |	`kat`  |	Georgian	|	Mid	|
  |	`kau` (`knc`)  |	Kanuri (Central)	|	Low	|
  |	`kaz`  |	Kazakh	|	Mid	|
  |	`khm`  |	Khmer	|	Low	|
  |	`kir`  |	Kyrgyz	|	Low	|
  |	`kor`  |	Korean	|	High	|
  |	`kur` (`ckb` & `kmr`) |	Kurdish (Central & Northern)	|	Low	|
  |	`lao`  |	Lao	|	Low	|
  |	`lav` (`lvs`)  |	Latvian (Standard)	|	Mid	|
  |	`lit`  |	Lithuanian	|	Mid	|
  |	`ltz`  |	Luxembourgish	|	Low	|
  |	`mal`  |	Malayalam	|	Low	|
  |	`mar`  |	Marathi	|	Low	|
  |	`min`  |	Minangkabau	|	Low	|
  |	`mkd`  |	Macedonian	|	Low	|
  |	`mlg` (`plt`)  |	Malagasy (Plateau)	|	Low	|
  |	`mlt`  |	Maltese	|	Low	|
  |	`mni`  |	Manipuri	|	Low	|
  |	`mon` (`khk`)  |	Mongolian (Khalkha)	|	Low	|
  |	`mri`  |	Maori	|	Low	|
  |	`msa` (`zsm`)  |	Malay (Standard)	|	Mid	|
  |	`mya`  |	Burmese	|	Low	|
  |	`nep` (`npi`)  |	Nepali	|	Low	|
  |	`nld`  |	Dutch	|	High	|
  |	`nor` (`nno` & `nob`)  |	Norwegian (Nynorsk & Bokmål)	|	Low	|
  |	`nso`  |	Northern Sotho	|	Low	|
  |	`pes`  |	Persian	|	High	|
  |	`pol`  |	Polish	|	High	|
  |	`por`  |	Portuguese	|	High	|
  |	`pus` (`pbt`)  |	Pashto (Southern)	|	Low	|
  |	`ron`  |	Romanian	|	Mid	|
  |	`rus`  |	Russian	|	High	|
  |	`sin`  |	Sinhala	|	Low	|
  |	`slk`  |	Slovak	|	Mid	|
  |	`slv`  |	Slovenian	|	Mid	|
  |	`smo`  |	Samoan	|	Low	|
  |	`sna`  |	Shona	|	Low	|
  |	`snd`  |	Sindhi	|	Low	|
  |	`som`  |	Somali	|	Low	|
  |	`sot`  |	Southern Sotho	|	Low	|
  |	`spa`  |	Spanish	|	High	|
  |	`sqi` (`als`)  |	Albanian (Tosk)	|	Low	|
  |	`srp`  |	Serbian	|	High	|
  |	`sun`  |	Sundanese	|	Low	|
  |	`swa` (`swh`)  |	Swahili (Coastal) |	Low	|
  |	`swe`  |	Swedish	|	High	|
  |	`tam`  |	Tamil	|	Mid	|
  |	`taq`  |	Tamasheq	|	Low	|
  |	`tel`  |	Telugu	|	Low	|
  |	`tgk`  |	Tajik	|	Low	|
  |	`tha`  |	Thai	|	Mid	|
  |	`tur`  |	Turkish	|	High	|
  |	`ukr`  |	Ukrainian	|	Mid	|
  |	`urd`  |	Urdu	|	Mid	|
  |	`uzb` (`uzn`)  |	Uzbek (Nothern)	|	Mid	|
  |	`vie`  |	Vietnamese	|	High	|
  |	`xho`  |	Xhosa	|	Low	|
  |	`yid` (`ydd`)  |	Yiddish (Eastern)	|	Low	|
  |	`yor`  |	Yoruba	|	Low	|
  |	`zho` & `yue`  |	Chinese	 (Simplified & Yue) |	High	|
  |	`zul`  |	Zulu	|	Low	|
</details>

<details>
<summary> <b>dolly-human-edited</b> </summary>
  
  | ISO Code | Language | Resources |
  |----------|----------|-----------|
  | `arb` | Arabic | High |
  | `fra` | French | High |
  | `hin` | Hindi | High |
  | `rus` | Russian | High |
  | `spa` | Spanish | High |
  | `srp` | Serbian | High |

</details>

<br>

# Motivations & Intentions

- **Curation Rationale:** This evaluation suite is tailored to test the generation quality of multilingual models, with the aim of balancing language coverage and human-sourced quality.
It covers prompts originally written in each language, as well as English-centric translated and manually curated or edited prompts for a linguistically broad but rich testbed.
The list of languages was established from mT5 and aligned with the annotators’ language list and the NLLB translation model.

# Known Limitations

- **Translation Quality:** Note that the expressiveness of the `dolly-machine-translated` subset is limited by the quality of the translation model and may adversely impact an estimate of ability in languages where translations are not adequate. If this subset is used for testing, we recommend it be paired and reported with the professionally post-edited `dolly-human-edited` subset or the `aya-human-annotated` set, which also only covers 7 languages but is entirely created by proficient target language speakers.
---

# Additional Information

## Provenance
- **Methods Used:** combination of original annotations by volunteers, automatic translation, and post-editing of translations by professional annotators.
- **Methodology Details:**
    -  *Source:* Original annotations and translations and post-edits of Dolly
    - *Platform:* [Aya Annotation Platform](https://aya.for.ai/)
    - *Dates of Collection:* Jun 2023 - Dec 2023


## Dataset Version and Maintenance
- **Maintenance Status:** Actively Maintained
- **Version Details:**
    - *Current version:* 1.0
    - *Last Update:* 02/2024
    - *First Release:* 02/2024
- **Maintenance Plan:** No updates planned.


## Authorship

- **Publishing Organization:** [Cohere For AI](https://cohere.com/research)
- **Industry Type:** Not-for-profit - Tech
- **Contact Details:** https://aya.for.ai/


## Licensing Information
This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License.


## Citation Information
```bibtex
@misc{ayadata2024,
    title = {Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning},
    author = {Shivalika Singh, Freddie Vargus, Daniel D'souza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura O'Mahony, Mike Zhang, Ramith Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, Sara Hooker},
    year = 2024,
}
```