Datasets:

Languages:
English
License:
File size: 5,090 Bytes
748e977
 
 
 
 
 
 
 
 
 
 
 
 
 
1f97567
748e977
 
 
 
 
1f97567
 
 
 
 
 
 
 
 
 
748e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5af11
 
748e977
 
1f97567
748e977
 
1f97567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748e977
 
 
 
1f97567
748e977
1f97567
748e977
 
 
 
 
 
 
1f97567
 
748e977
 
1f97567
748e977
 
 
 
 
1f97567
748e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4532c
748e977
 
 
1f97567
 
748e977
 
1f97567
 
748e977
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Text REtrieval Conference (TREC) Question Classification dataset."""


import datasets


_DESCRIPTION = """\
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.

The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.

Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
"""

_HOMEPAGE = "https://cogcomp.seas.upenn.edu/Data/QA/QC/"

_CITATION = """\
@inproceedings{li-roth-2002-learning,
    title = "Learning Question Classifiers",
    author = "Li, Xin  and
      Roth, Dan",
    booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
    year = "2002",
    url = "https://www.aclweb.org/anthology/C02-1150",
}
@inproceedings{hovy-etal-2001-toward,
    title = "Toward Semantics-Based Answer Pinpointing",
    author = "Hovy, Eduard  and
      Gerber, Laurie  and
      Hermjakob, Ulf  and
      Lin, Chin-Yew  and
      Ravichandran, Deepak",
    booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
    year = "2001",
    url = "https://www.aclweb.org/anthology/H01-1069",
}
"""

_URLs = {
    "train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label",
    "test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label",
}

_COARSE_LABELS = ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"]

_FINE_LABELS = [
    "ABBR:abb",
    "ABBR:exp",
    "ENTY:animal",
    "ENTY:body",
    "ENTY:color",
    "ENTY:cremat",
    "ENTY:currency",
    "ENTY:dismed",
    "ENTY:event",
    "ENTY:food",
    "ENTY:instru",
    "ENTY:lang",
    "ENTY:letter",
    "ENTY:other",
    "ENTY:plant",
    "ENTY:product",
    "ENTY:religion",
    "ENTY:sport",
    "ENTY:substance",
    "ENTY:symbol",
    "ENTY:techmeth",
    "ENTY:termeq",
    "ENTY:veh",
    "ENTY:word",
    "DESC:def",
    "DESC:desc",
    "DESC:manner",
    "DESC:reason",
    "HUM:gr",
    "HUM:ind",
    "HUM:title",
    "HUM:desc",
    "LOC:city",
    "LOC:country",
    "LOC:mount",
    "LOC:other",
    "LOC:state",
    "NUM:code",
    "NUM:count",
    "NUM:date",
    "NUM:dist",
    "NUM:money",
    "NUM:ord",
    "NUM:other",
    "NUM:period",
    "NUM:perc",
    "NUM:speed",
    "NUM:temp",
    "NUM:volsize",
    "NUM:weight",
]


class Trec(datasets.GeneratorBasedBuilder):
    """The Text REtrieval Conference (TREC) Question Classification dataset."""

    VERSION = datasets.Version("2.0.0", description="Fine label contains 50 classes instead of 47.")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "coarse_label": datasets.ClassLabel(names=_COARSE_LABELS),
                    "fine_label": datasets.ClassLabel(names=_FINE_LABELS),
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_files = dl_manager.download(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": dl_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": dl_files["test"],
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, "rb") as f:
            for id_, row in enumerate(f):
                # One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
                fine_label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
                coarse_label = fine_label.split(":")[0]
                yield id_, {
                    "text": text,
                    "coarse_label": coarse_label,
                    "fine_label": fine_label,
                }