Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
Commit
•
1f97567
1
Parent(s):
bc790b9
Fix fine classes in trec dataset (#4801)
Browse files* Fix fine label from 47 to 50 classes
* Update dataset card
* Update metadata JSON
* Update dummy data path
* Remove tags tag from dataset card
Commit from https://github.com/huggingface/datasets/commit/cd00f13ce5c280b55c19e176165aec902a438ef2
- README.md +94 -17
- dataset_infos.json +1 -1
- dummy/{1.1.0 → 2.0.0}/dummy_data.zip +0 -0
- trec.py +72 -79
README.md
CHANGED
@@ -1,8 +1,24 @@
|
|
1 |
---
|
|
|
|
|
2 |
language:
|
3 |
- en
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
pretty_name: Text Retrieval Conference Question Answering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# Dataset Card for "trec"
|
@@ -43,9 +59,11 @@ pretty_name: Text Retrieval Conference Question Answering
|
|
43 |
|
44 |
### Dataset Summary
|
45 |
|
46 |
-
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
### Supported Tasks and Leaderboards
|
51 |
|
@@ -53,14 +71,12 @@ Data are collected from four sources: 4,500 English questions published by USC (
|
|
53 |
|
54 |
### Languages
|
55 |
|
56 |
-
|
57 |
|
58 |
## Dataset Structure
|
59 |
|
60 |
### Data Instances
|
61 |
|
62 |
-
#### default
|
63 |
-
|
64 |
- **Size of downloaded dataset files:** 0.34 MB
|
65 |
- **Size of the generated dataset:** 0.39 MB
|
66 |
- **Total amount of disk used:** 0.74 MB
|
@@ -68,9 +84,9 @@ Data are collected from four sources: 4,500 English questions published by USC (
|
|
68 |
An example of 'train' looks as follows.
|
69 |
```
|
70 |
{
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
}
|
75 |
```
|
76 |
|
@@ -78,16 +94,78 @@ An example of 'train' looks as follows.
|
|
78 |
|
79 |
The data fields are the same among all splits.
|
80 |
|
81 |
-
|
82 |
-
- `
|
83 |
-
-
|
84 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
### Data Splits
|
87 |
|
88 |
-
| name
|
89 |
-
|
90 |
-
|default|
|
91 |
|
92 |
## Dataset Creation
|
93 |
|
@@ -165,7 +243,6 @@ The data fields are the same among all splits.
|
|
165 |
year = "2001",
|
166 |
url = "https://www.aclweb.org/anthology/H01-1069",
|
167 |
}
|
168 |
-
|
169 |
```
|
170 |
|
171 |
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
language:
|
5 |
- en
|
6 |
+
language_creators:
|
7 |
+
- expert-generated
|
8 |
+
license:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
pretty_name: Text Retrieval Conference Question Answering
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
task_categories:
|
18 |
+
- text-classification
|
19 |
+
task_ids:
|
20 |
+
- multi-class-classification
|
21 |
+
paperswithcode_id: trecqa
|
22 |
---
|
23 |
|
24 |
# Dataset Card for "trec"
|
|
|
59 |
|
60 |
### Dataset Summary
|
61 |
|
62 |
+
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
|
63 |
|
64 |
+
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.
|
65 |
+
|
66 |
+
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
|
67 |
|
68 |
### Supported Tasks and Leaderboards
|
69 |
|
|
|
71 |
|
72 |
### Languages
|
73 |
|
74 |
+
The language in this dataset is English (`en`).
|
75 |
|
76 |
## Dataset Structure
|
77 |
|
78 |
### Data Instances
|
79 |
|
|
|
|
|
80 |
- **Size of downloaded dataset files:** 0.34 MB
|
81 |
- **Size of the generated dataset:** 0.39 MB
|
82 |
- **Total amount of disk used:** 0.74 MB
|
|
|
84 |
An example of 'train' looks as follows.
|
85 |
```
|
86 |
{
|
87 |
+
'text': 'How did serfdom develop in and then leave Russia ?',
|
88 |
+
'coarse_label': 2,
|
89 |
+
'fine_label': 26
|
90 |
}
|
91 |
```
|
92 |
|
|
|
94 |
|
95 |
The data fields are the same among all splits.
|
96 |
|
97 |
+
- `text` (`str`): Text of the question.
|
98 |
+
- `coarse_label` (`ClassLabel`): Coarse class label. Possible values are:
|
99 |
+
- 'ABBR' (0): Abbreviation.
|
100 |
+
- 'ENTY' (1): Entity.
|
101 |
+
- 'DESC' (2): Description and abstract concept.
|
102 |
+
- 'HUM' (3): Human being.
|
103 |
+
- 'LOC' (4): Location.
|
104 |
+
- 'NUM' (5): Numeric value.
|
105 |
+
- `fine_label` (`ClassLabel`): Fine class label. Possible values are:
|
106 |
+
- ABBREVIATION:
|
107 |
+
- 'ABBR:abb' (0): Abbreviation.
|
108 |
+
- 'ABBR:exp' (1): Expression abbreviated.
|
109 |
+
- ENTITY:
|
110 |
+
- 'ENTY:animal' (2): Animal.
|
111 |
+
- 'ENTY:body' (3): Organ of body.
|
112 |
+
- 'ENTY:color' (4): Color.
|
113 |
+
- 'ENTY:cremat' (5): Invention, book and other creative piece.
|
114 |
+
- 'ENTY:currency' (6): Currency name.
|
115 |
+
- 'ENTY:dismed' (7): Disease and medicine.
|
116 |
+
- 'ENTY:event' (8): Event.
|
117 |
+
- 'ENTY:food' (9): Food.
|
118 |
+
- 'ENTY:instru' (10): Musical instrument.
|
119 |
+
- 'ENTY:lang' (11): Language.
|
120 |
+
- 'ENTY:letter' (12): Letter like a-z.
|
121 |
+
- 'ENTY:other' (13): Other entity.
|
122 |
+
- 'ENTY:plant' (14): Plant.
|
123 |
+
- 'ENTY:product' (15): Product.
|
124 |
+
- 'ENTY:religion' (16): Religion.
|
125 |
+
- 'ENTY:sport' (17): Sport.
|
126 |
+
- 'ENTY:substance' (18): Element and substance.
|
127 |
+
- 'ENTY:symbol' (19): Symbols and sign.
|
128 |
+
- 'ENTY:techmeth' (20): Techniques and method.
|
129 |
+
- 'ENTY:termeq' (21): Equivalent term.
|
130 |
+
- 'ENTY:veh' (22): Vehicle.
|
131 |
+
- 'ENTY:word' (23): Word with a special property.
|
132 |
+
- DESCRIPTION:
|
133 |
+
- 'DESC:def' (24): Definition of something.
|
134 |
+
- 'DESC:desc' (25): Description of something.
|
135 |
+
- 'DESC:manner' (26): Manner of an action.
|
136 |
+
- 'DESC:reason' (27): Reason.
|
137 |
+
- HUMAN:
|
138 |
+
- 'HUM:gr' (28): Group or organization of persons
|
139 |
+
- 'HUM:ind' (29): Individual.
|
140 |
+
- 'HUM:title' (30): Title of a person.
|
141 |
+
- 'HUM:desc' (31): Description of a person.
|
142 |
+
- LOCATION:
|
143 |
+
- 'LOC:city' (32): City.
|
144 |
+
- 'LOC:country' (33): Country.
|
145 |
+
- 'LOC:mount' (34): Mountain.
|
146 |
+
- 'LOC:other' (35): Other location.
|
147 |
+
- 'LOC:state' (36): State.
|
148 |
+
- NUMERIC:
|
149 |
+
- 'NUM:code' (37): Postcode or other code.
|
150 |
+
- 'NUM:count' (38): Number of something.
|
151 |
+
- 'NUM:date' (39): Date.
|
152 |
+
- 'NUM:dist' (40): Distance, linear measure.
|
153 |
+
- 'NUM:money' (41): Price.
|
154 |
+
- 'NUM:ord' (42): Order, rank.
|
155 |
+
- 'NUM:other' (43): Other number.
|
156 |
+
- 'NUM:period' (44): Lasting time of something
|
157 |
+
- 'NUM:perc' (45): Percent, fraction.
|
158 |
+
- 'NUM:speed' (46): Speed.
|
159 |
+
- 'NUM:temp' (47): Temperature.
|
160 |
+
- 'NUM:volsize' (48): Size, area and volume.
|
161 |
+
- 'NUM:weight' (49): Weight.
|
162 |
+
|
163 |
|
164 |
### Data Splits
|
165 |
|
166 |
+
| name | train | test |
|
167 |
+
|---------|------:|-----:|
|
168 |
+
| default | 5452 | 500 |
|
169 |
|
170 |
## Dataset Creation
|
171 |
|
|
|
243 |
year = "2001",
|
244 |
url = "https://www.aclweb.org/anthology/H01-1069",
|
245 |
}
|
|
|
246 |
```
|
247 |
|
248 |
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set
|
|
|
1 |
+
{"default": {"description": "The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.\n\nThe dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.\n\nData are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.\n", "citation": "@inproceedings{li-roth-2002-learning,\n title = \"Learning Question Classifiers\",\n author = \"Li, Xin and\n Roth, Dan\",\n booktitle = \"{COLING} 2002: The 19th International Conference on Computational Linguistics\",\n year = \"2002\",\n url = \"https://www.aclweb.org/anthology/C02-1150\",\n}\n@inproceedings{hovy-etal-2001-toward,\n title = \"Toward Semantics-Based Answer Pinpointing\",\n author = \"Hovy, Eduard and\n Gerber, Laurie and\n Hermjakob, Ulf and\n Lin, Chin-Yew and\n Ravichandran, Deepak\",\n booktitle = \"Proceedings of the First International Conference on Human Language Technology Research\",\n year = \"2001\",\n url = \"https://www.aclweb.org/anthology/H01-1069\",\n}\n", "homepage": "https://cogcomp.seas.upenn.edu/Data/QA/QC/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "coarse_label": {"num_classes": 6, "names": ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"], "id": null, "_type": "ClassLabel"}, "fine_label": {"num_classes": 50, "names": ["ABBR:abb", "ABBR:exp", "ENTY:animal", "ENTY:body", "ENTY:color", "ENTY:cremat", "ENTY:currency", "ENTY:dismed", "ENTY:event", "ENTY:food", "ENTY:instru", "ENTY:lang", "ENTY:letter", "ENTY:other", "ENTY:plant", "ENTY:product", "ENTY:religion", "ENTY:sport", "ENTY:substance", "ENTY:symbol", "ENTY:techmeth", "ENTY:termeq", "ENTY:veh", "ENTY:word", "DESC:def", "DESC:desc", "DESC:manner", "DESC:reason", "HUM:gr", "HUM:ind", "HUM:title", "HUM:desc", "LOC:city", "LOC:country", "LOC:mount", "LOC:other", "LOC:state", "NUM:code", "NUM:count", "NUM:date", "NUM:dist", "NUM:money", "NUM:ord", "NUM:other", "NUM:period", "NUM:perc", "NUM:speed", "NUM:temp", "NUM:volsize", "NUM:weight"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "trec", "config_name": "default", "version": {"version_str": "2.0.0", "description": "Fine label contains 50 classes instead of 47.", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 385090, "num_examples": 5452, "dataset_name": "trec"}, "test": {"name": "test", "num_bytes": 27983, "num_examples": 500, "dataset_name": "trec"}}, "download_checksums": {"https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label": {"num_bytes": 335858, "checksum": "9e4c8bdcaffb96ed61041bd64b564183d52793a8e91d84fc3a8646885f466ec3"}, "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label": {"num_bytes": 23354, "checksum": "033f22c028c2bbba9ca682f68ffe204dc1aa6e1cf35dd6207f2d4ca67f0d0e8e"}}, "download_size": 359212, "post_processing_size": null, "dataset_size": 413073, "size_in_bytes": 772285}}
|
dummy/{1.1.0 → 2.0.0}/dummy_data.zip
RENAMED
File without changes
|
trec.py
CHANGED
@@ -12,12 +12,22 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""
|
16 |
|
17 |
|
18 |
import datasets
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
_CITATION = """\
|
22 |
@inproceedings{li-roth-2002-learning,
|
23 |
title = "Learning Question Classifiers",
|
@@ -40,114 +50,98 @@ _CITATION = """\
|
|
40 |
}
|
41 |
"""
|
42 |
|
43 |
-
_DESCRIPTION = """\
|
44 |
-
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. The dataset has 6 labels, 47 level-2 labels. Average length of each sentence is 10, vocabulary size of 8700.
|
45 |
-
|
46 |
-
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set.
|
47 |
-
"""
|
48 |
-
|
49 |
_URLs = {
|
50 |
"train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label",
|
51 |
"test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label",
|
52 |
}
|
53 |
|
54 |
-
_COARSE_LABELS = ["
|
55 |
|
56 |
_FINE_LABELS = [
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"animal",
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
-
"religion",
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"
|
85 |
-
"
|
86 |
-
"
|
87 |
-
"
|
88 |
-
"
|
89 |
-
"
|
90 |
-
"
|
91 |
-
"
|
92 |
-
"
|
93 |
-
"
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"
|
97 |
-
"dist",
|
98 |
-
"
|
99 |
-
"
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"
|
103 |
-
"
|
|
|
|
|
|
|
104 |
]
|
105 |
|
106 |
|
107 |
class Trec(datasets.GeneratorBasedBuilder):
|
108 |
-
"""
|
109 |
|
110 |
-
VERSION = datasets.Version("
|
111 |
|
112 |
def _info(self):
|
113 |
-
# TODO: Specifies the datasets.DatasetInfo object
|
114 |
return datasets.DatasetInfo(
|
115 |
-
# This is the description that will appear on the datasets page.
|
116 |
description=_DESCRIPTION,
|
117 |
-
# datasets.features.FeatureConnectors
|
118 |
features=datasets.Features(
|
119 |
{
|
120 |
-
"label-coarse": datasets.ClassLabel(names=_COARSE_LABELS),
|
121 |
-
"label-fine": datasets.ClassLabel(names=_FINE_LABELS),
|
122 |
"text": datasets.Value("string"),
|
|
|
|
|
123 |
}
|
124 |
),
|
125 |
-
|
126 |
-
# specify them here. They'll be used if as_supervised=True in
|
127 |
-
# builder.as_dataset.
|
128 |
-
supervised_keys=None,
|
129 |
-
# Homepage of the dataset for documentation
|
130 |
-
homepage="https://cogcomp.seas.upenn.edu/Data/QA/QC/",
|
131 |
citation=_CITATION,
|
132 |
)
|
133 |
|
134 |
def _split_generators(self, dl_manager):
|
135 |
"""Returns SplitGenerators."""
|
136 |
-
|
137 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
138 |
-
# download and extract URLs
|
139 |
-
dl_files = dl_manager.download_and_extract(_URLs)
|
140 |
return [
|
141 |
datasets.SplitGenerator(
|
142 |
name=datasets.Split.TRAIN,
|
143 |
-
# These kwargs will be passed to _generate_examples
|
144 |
gen_kwargs={
|
145 |
"filepath": dl_files["train"],
|
146 |
},
|
147 |
),
|
148 |
datasets.SplitGenerator(
|
149 |
name=datasets.Split.TEST,
|
150 |
-
# These kwargs will be passed to _generate_examples
|
151 |
gen_kwargs={
|
152 |
"filepath": dl_files["test"],
|
153 |
},
|
@@ -156,14 +150,13 @@ class Trec(datasets.GeneratorBasedBuilder):
|
|
156 |
|
157 |
def _generate_examples(self, filepath):
|
158 |
"""Yields examples."""
|
159 |
-
# TODO: Yields (key, example) tuples from the dataset
|
160 |
with open(filepath, "rb") as f:
|
161 |
for id_, row in enumerate(f):
|
162 |
# One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
|
163 |
-
|
164 |
-
coarse_label
|
165 |
yield id_, {
|
166 |
-
"label-coarse": coarse_label,
|
167 |
-
"label-fine": fine_label,
|
168 |
"text": text,
|
|
|
|
|
169 |
}
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
+
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
|
16 |
|
17 |
|
18 |
import datasets
|
19 |
|
20 |
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
|
23 |
+
|
24 |
+
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.
|
25 |
+
|
26 |
+
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
|
27 |
+
"""
|
28 |
+
|
29 |
+
_HOMEPAGE = "https://cogcomp.seas.upenn.edu/Data/QA/QC/"
|
30 |
+
|
31 |
_CITATION = """\
|
32 |
@inproceedings{li-roth-2002-learning,
|
33 |
title = "Learning Question Classifiers",
|
|
|
50 |
}
|
51 |
"""
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
_URLs = {
|
54 |
"train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label",
|
55 |
"test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label",
|
56 |
}
|
57 |
|
58 |
+
_COARSE_LABELS = ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"]
|
59 |
|
60 |
_FINE_LABELS = [
|
61 |
+
"ABBR:abb",
|
62 |
+
"ABBR:exp",
|
63 |
+
"ENTY:animal",
|
64 |
+
"ENTY:body",
|
65 |
+
"ENTY:color",
|
66 |
+
"ENTY:cremat",
|
67 |
+
"ENTY:currency",
|
68 |
+
"ENTY:dismed",
|
69 |
+
"ENTY:event",
|
70 |
+
"ENTY:food",
|
71 |
+
"ENTY:instru",
|
72 |
+
"ENTY:lang",
|
73 |
+
"ENTY:letter",
|
74 |
+
"ENTY:other",
|
75 |
+
"ENTY:plant",
|
76 |
+
"ENTY:product",
|
77 |
+
"ENTY:religion",
|
78 |
+
"ENTY:sport",
|
79 |
+
"ENTY:substance",
|
80 |
+
"ENTY:symbol",
|
81 |
+
"ENTY:techmeth",
|
82 |
+
"ENTY:termeq",
|
83 |
+
"ENTY:veh",
|
84 |
+
"ENTY:word",
|
85 |
+
"DESC:def",
|
86 |
+
"DESC:desc",
|
87 |
+
"DESC:manner",
|
88 |
+
"DESC:reason",
|
89 |
+
"HUM:gr",
|
90 |
+
"HUM:ind",
|
91 |
+
"HUM:title",
|
92 |
+
"HUM:desc",
|
93 |
+
"LOC:city",
|
94 |
+
"LOC:country",
|
95 |
+
"LOC:mount",
|
96 |
+
"LOC:other",
|
97 |
+
"LOC:state",
|
98 |
+
"NUM:code",
|
99 |
+
"NUM:count",
|
100 |
+
"NUM:date",
|
101 |
+
"NUM:dist",
|
102 |
+
"NUM:money",
|
103 |
+
"NUM:ord",
|
104 |
+
"NUM:other",
|
105 |
+
"NUM:period",
|
106 |
+
"NUM:perc",
|
107 |
+
"NUM:speed",
|
108 |
+
"NUM:temp",
|
109 |
+
"NUM:volsize",
|
110 |
+
"NUM:weight",
|
111 |
]
|
112 |
|
113 |
|
114 |
class Trec(datasets.GeneratorBasedBuilder):
|
115 |
+
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
|
116 |
|
117 |
+
VERSION = datasets.Version("2.0.0", description="Fine label contains 50 classes instead of 47.")
|
118 |
|
119 |
def _info(self):
|
|
|
120 |
return datasets.DatasetInfo(
|
|
|
121 |
description=_DESCRIPTION,
|
|
|
122 |
features=datasets.Features(
|
123 |
{
|
|
|
|
|
124 |
"text": datasets.Value("string"),
|
125 |
+
"coarse_label": datasets.ClassLabel(names=_COARSE_LABELS),
|
126 |
+
"fine_label": datasets.ClassLabel(names=_FINE_LABELS),
|
127 |
}
|
128 |
),
|
129 |
+
homepage=_HOMEPAGE,
|
|
|
|
|
|
|
|
|
|
|
130 |
citation=_CITATION,
|
131 |
)
|
132 |
|
133 |
def _split_generators(self, dl_manager):
|
134 |
"""Returns SplitGenerators."""
|
135 |
+
dl_files = dl_manager.download(_URLs)
|
|
|
|
|
|
|
136 |
return [
|
137 |
datasets.SplitGenerator(
|
138 |
name=datasets.Split.TRAIN,
|
|
|
139 |
gen_kwargs={
|
140 |
"filepath": dl_files["train"],
|
141 |
},
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split.TEST,
|
|
|
145 |
gen_kwargs={
|
146 |
"filepath": dl_files["test"],
|
147 |
},
|
|
|
150 |
|
151 |
def _generate_examples(self, filepath):
|
152 |
"""Yields examples."""
|
|
|
153 |
with open(filepath, "rb") as f:
|
154 |
for id_, row in enumerate(f):
|
155 |
# One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
|
156 |
+
fine_label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
|
157 |
+
coarse_label = fine_label.split(":")[0]
|
158 |
yield id_, {
|
|
|
|
|
159 |
"text": text,
|
160 |
+
"coarse_label": coarse_label,
|
161 |
+
"fine_label": fine_label,
|
162 |
}
|