Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
File size: 5,090 Bytes
748e977 1f97567 748e977 1f97567 748e977 de5af11 748e977 1f97567 748e977 1f97567 748e977 1f97567 748e977 1f97567 748e977 1f97567 748e977 1f97567 748e977 1f97567 748e977 7c4532c 748e977 1f97567 748e977 1f97567 748e977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
import datasets
_DESCRIPTION = """\
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700.
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled.
"""
_HOMEPAGE = "https://cogcomp.seas.upenn.edu/Data/QA/QC/"
_CITATION = """\
@inproceedings{li-roth-2002-learning,
title = "Learning Question Classifiers",
author = "Li, Xin and
Roth, Dan",
booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
year = "2002",
url = "https://www.aclweb.org/anthology/C02-1150",
}
@inproceedings{hovy-etal-2001-toward,
title = "Toward Semantics-Based Answer Pinpointing",
author = "Hovy, Eduard and
Gerber, Laurie and
Hermjakob, Ulf and
Lin, Chin-Yew and
Ravichandran, Deepak",
booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
year = "2001",
url = "https://www.aclweb.org/anthology/H01-1069",
}
"""
_URLs = {
"train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label",
"test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label",
}
_COARSE_LABELS = ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"]
_FINE_LABELS = [
"ABBR:abb",
"ABBR:exp",
"ENTY:animal",
"ENTY:body",
"ENTY:color",
"ENTY:cremat",
"ENTY:currency",
"ENTY:dismed",
"ENTY:event",
"ENTY:food",
"ENTY:instru",
"ENTY:lang",
"ENTY:letter",
"ENTY:other",
"ENTY:plant",
"ENTY:product",
"ENTY:religion",
"ENTY:sport",
"ENTY:substance",
"ENTY:symbol",
"ENTY:techmeth",
"ENTY:termeq",
"ENTY:veh",
"ENTY:word",
"DESC:def",
"DESC:desc",
"DESC:manner",
"DESC:reason",
"HUM:gr",
"HUM:ind",
"HUM:title",
"HUM:desc",
"LOC:city",
"LOC:country",
"LOC:mount",
"LOC:other",
"LOC:state",
"NUM:code",
"NUM:count",
"NUM:date",
"NUM:dist",
"NUM:money",
"NUM:ord",
"NUM:other",
"NUM:period",
"NUM:perc",
"NUM:speed",
"NUM:temp",
"NUM:volsize",
"NUM:weight",
]
class Trec(datasets.GeneratorBasedBuilder):
"""The Text REtrieval Conference (TREC) Question Classification dataset."""
VERSION = datasets.Version("2.0.0", description="Fine label contains 50 classes instead of 47.")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"coarse_label": datasets.ClassLabel(names=_COARSE_LABELS),
"fine_label": datasets.ClassLabel(names=_FINE_LABELS),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_files = dl_manager.download(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_files["test"],
},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, "rb") as f:
for id_, row in enumerate(f):
# One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
fine_label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
coarse_label = fine_label.split(":")[0]
yield id_, {
"text": text,
"coarse_label": coarse_label,
"fine_label": fine_label,
}
|