Datasets:

Modalities:
Text
Languages:
code
ArXiv:
Libraries:
Datasets
License:
File size: 7,329 Bytes
f875f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4c9ae
f875f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85230dc
f875f18
 
 
 
85230dc
f875f18
 
 
 
 
 
 
 
 
cd4c9ae
 
f875f18
cd4c9ae
f875f18
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Special thanks to @lvwerra -- we reference his repository here: https://huggingface.co/datasets/lvwerra/github-code/
"""Code Clippy Github Code dataset."""

import os


import datasets
from huggingface_hub import HfApi, HfFolder
from datasets.data_files import DataFilesDict

import gzip
import json

_REPO_NAME = "CodedotAI/code_clippy_github"

_LANG_TO_EXTENSION = {
    "C": [".c"],
    "C#": [".cs"],
    "C++": [".cpp"],
    "CSS": [".css"],
    "Dart" : [".dart"],
    "GO": [".go"],
    "HTML":[".html"],
    "Java": [".java"],
    "JavaScript": [".js"],
    "Jupyter Notebooks (Python)": [".ipynb"],
    "Kotlin" : [".kt"],
    "Lisp" : [".lisp"],
    "Matlab" : [".m"],
    "PHP": [".php"],
    "Perl": [".pl"],
    "Python": [".py"],
    "R" : [".r"],
    "Ruby": [".rb"],
    "Rust": [".rs"],
    "SQL": [".sql"],
    "Shell": [".sh"],
    "Swift" : [".swift"],
    "TypeScript": [".ts"],
}

_LICENSES = [
    'mit',
    'apache-2.0',
    'gpl-2.0',
    'gpl-3.0',
    'bsd-3-clause',
    'bsd-2-clause',
    'unlicense',
    'apacheagpl-3.0',
    'lgpl-3.0',
    'cc0-1.0',
    'epl-1.0',
    'lgpl-2.1',
    'mpl-2.0',
    'isc',
    'artistic-2.0'
 ]

_DESCRIPTION = """\
The Code Clippy dataset consists of various public codebases from GitHub in 22 programming languages with 23 extensions \
    totalling about 16 TB of data when uncompressed. The dataset was created from the public GitHub dataset on Google BiqQuery.
"""

_HOMEPAGE = "https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code/"


_EXTENSION_TO_LANG = {}
for lang in _LANG_TO_EXTENSION:
    for extension in _LANG_TO_EXTENSION[lang]:
        _EXTENSION_TO_LANG[extension] = lang


        
_LANG_CONFIGS = ["all"] + list(_LANG_TO_EXTENSION.keys())
_LICENSE_CONFIGS = ["all"] + _LICENSES
        
class CodeClippyGithubConfig(datasets.BuilderConfig):
    """BuilderConfig for the Code Clippy Github dataset."""

    def __init__(self, *args, languages=["all"], licenses=["all"], **kwargs):
        """BuilderConfig for the Code Clippy Github dataset.
        Args:
            languages (:obj:`List[str]`): List of languages to load.
            licenses (:obj:`List[str]`): List of licenses to load.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name="+".join(languages)+"-"+"+".join(licenses),
            **kwargs,
        )
        
        languages = set(languages)
        licenses = set(licenses)
        
        assert all([language in _LANG_CONFIGS for language in languages]), f"Language not in {_LANG_CONFIGS}."
        assert all([license in _LICENSE_CONFIGS for license in licenses]), f"License not in {_LICENSE_CONFIGS}."
        
        if "all" in languages:
            assert len(languages)==1, "Passed 'all' together with other languages."
            self.filter_languages = False
        else:
            self.filter_languages = True
            
        if "all" in licenses:
            assert len(licenses)==1, "Passed 'all' together with other licenses."
            self.filter_licenses = False
        else:
            self.filter_licenses = True
        
        self.languages = set(languages)
        self.licenses = set(licenses)


        
class CodeClippyGithub(datasets.GeneratorBasedBuilder):
    """Code Clippy Github dataset."""

    VERSION = datasets.Version("1.0.0")
    
    BUILDER_CONFIG_CLASS = CodeClippyGithubConfig
    BUILDER_CONFIGS = [CodeClippyGithubConfig(languages=[lang], licenses=[license]) for lang in _LANG_CONFIGS
                                                                        for license in _LICENSE_CONFIGS]
    DEFAULT_CONFIG_NAME = "all-all"
    
    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"code_text": datasets.Value("string"),
                                        "repo_name": datasets.Value("string"),
                                        "file_path": datasets.Value("string"), 
                                        "language": datasets.Value("string"),
                                        "license": datasets.Value("string"),
                                        "size": datasets.Value("int32")}),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license="Multiple: see the 'license' field of each sample.",
            
        )

    def _split_generators(self, dl_manager):
        
        hfh_dataset_info = HfApi(datasets.config.HF_ENDPOINT).dataset_info(
            _REPO_NAME,
            timeout=100.0,
        )

        patterns = datasets.data_files.get_patterns_in_dataset_repository(hfh_dataset_info)
        data_files = datasets.data_files.DataFilesDict.from_hf_repo(
            patterns,
            dataset_info=hfh_dataset_info,
        )

        files = dl_manager.download_and_extract(data_files["train"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": files,
                },
            ),
        ]

    def _generate_examples(self, files):
        key = 0
        for file_idx, file in enumerate(files):
            with gzip.open(file, "rb") as f:
                
                uncompressed_data = f.readlines()
                
                for batch_idx, code_base in enumerate(uncompressed_data):
                    j_dict = json.loads(code_base.decode('utf-8'))
                   
                   
                        
                    lang = lang_from_name(j_dict['path'])
                    license = j_dict["license"]
                    
                    if self.config.filter_languages and not lang in self.config.languages:
                        continue
                    if self.config.filter_licenses and not license in self.config.licenses:
                        continue
                    # TODO: Add more features like header comments, filename, and other features useful in a prompt.
                    yield key, {"code_text": j_dict['content'],
                                "repo_name": j_dict['repo_name'],
                                "file_path": j_dict['path'],
                                "license": license,
                                "language": lang,
                                "size": int(j_dict['f0_'])}    
                    key += 1

                        
def lang_from_name(name):
    for extension in _EXTENSION_TO_LANG:
        if name.endswith(extension):
            return _EXTENSION_TO_LANG[extension]