Datasets:
holylovenia
commited on
Commit
·
08143b8
1
Parent(s):
94efbe5
Fix loading script
Browse files- ascend.py → ASCEND.py +27 -11
- ASCEND.py.lock +0 -0
- dataset_infos.json +1 -0
ascend.py → ASCEND.py
RENAMED
@@ -14,11 +14,11 @@
|
|
14 |
# limitations under the License.
|
15 |
""" Common Voice Dataset"""
|
16 |
|
|
|
17 |
|
18 |
-
import os
|
19 |
|
20 |
import datasets
|
21 |
-
|
22 |
import pandas as pd
|
23 |
|
24 |
|
@@ -39,6 +39,15 @@ ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resourc
|
|
39 |
|
40 |
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
class ASCENDConfig(datasets.BuilderConfig):
|
44 |
"""BuilderConfig for ASCEND."""
|
@@ -75,6 +84,7 @@ class ASCEND(datasets.GeneratorBasedBuilder):
|
|
75 |
def _info(self):
|
76 |
features = datasets.Features(
|
77 |
{
|
|
|
78 |
"path": datasets.Value("string"),
|
79 |
"audio": datasets.Audio(sampling_rate=16_000),
|
80 |
"transcription": datasets.Value("string"),
|
@@ -95,37 +105,43 @@ class ASCEND(datasets.GeneratorBasedBuilder):
|
|
95 |
)
|
96 |
|
97 |
def _split_generators(self, dl_manager):
|
|
|
|
|
98 |
return [
|
99 |
datasets.SplitGenerator(
|
100 |
name=datasets.Split.TRAIN,
|
101 |
gen_kwargs={
|
102 |
-
"metadata_path": "
|
103 |
-
"split": "train",
|
104 |
},
|
105 |
),
|
106 |
datasets.SplitGenerator(
|
107 |
name=datasets.Split.TEST,
|
108 |
gen_kwargs={
|
109 |
-
"metadata_path": "
|
110 |
-
"split": "test"
|
111 |
},
|
112 |
),
|
113 |
datasets.SplitGenerator(
|
114 |
name=datasets.Split.VALIDATION,
|
115 |
gen_kwargs={
|
116 |
-
"metadata_path": "
|
117 |
-
"split": "validation",
|
118 |
},
|
119 |
),
|
120 |
]
|
121 |
|
122 |
def _generate_examples(self, metadata_path):
|
|
|
123 |
metadata_df = pd.read_csv(metadata_path)
|
124 |
|
125 |
for index, row in metadata_df.iterrows():
|
126 |
example = {
|
127 |
-
"id": index,
|
128 |
-
"
|
129 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
yield index, example
|
|
|
14 |
# limitations under the License.
|
15 |
""" Common Voice Dataset"""
|
16 |
|
17 |
+
from datasets import AutomaticSpeechRecognition
|
18 |
|
|
|
19 |
|
20 |
import datasets
|
21 |
+
import os
|
22 |
import pandas as pd
|
23 |
|
24 |
|
|
|
39 |
|
40 |
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
41 |
|
42 |
+
DEFAULT_CONFIG_NAME = "train"
|
43 |
+
|
44 |
+
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
|
45 |
+
_URLS = {
|
46 |
+
"train": _URL + "train_metadata.csv",
|
47 |
+
"test": _URL + "test_metadata.csv",
|
48 |
+
"validation": _URL + "validation_metadata.csv",
|
49 |
+
}
|
50 |
+
|
51 |
|
52 |
class ASCENDConfig(datasets.BuilderConfig):
|
53 |
"""BuilderConfig for ASCEND."""
|
|
|
84 |
def _info(self):
|
85 |
features = datasets.Features(
|
86 |
{
|
87 |
+
"id": datasets.Value("string"),
|
88 |
"path": datasets.Value("string"),
|
89 |
"audio": datasets.Audio(sampling_rate=16_000),
|
90 |
"transcription": datasets.Value("string"),
|
|
|
105 |
)
|
106 |
|
107 |
def _split_generators(self, dl_manager):
|
108 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
109 |
+
|
110 |
return [
|
111 |
datasets.SplitGenerator(
|
112 |
name=datasets.Split.TRAIN,
|
113 |
gen_kwargs={
|
114 |
+
"metadata_path": downloaded_files["train"]
|
|
|
115 |
},
|
116 |
),
|
117 |
datasets.SplitGenerator(
|
118 |
name=datasets.Split.TEST,
|
119 |
gen_kwargs={
|
120 |
+
"metadata_path": downloaded_files["test"]
|
|
|
121 |
},
|
122 |
),
|
123 |
datasets.SplitGenerator(
|
124 |
name=datasets.Split.VALIDATION,
|
125 |
gen_kwargs={
|
126 |
+
"metadata_path": downloaded_files["validation"]
|
|
|
127 |
},
|
128 |
),
|
129 |
]
|
130 |
|
131 |
def _generate_examples(self, metadata_path):
|
132 |
+
print(metadata_path)
|
133 |
metadata_df = pd.read_csv(metadata_path)
|
134 |
|
135 |
for index, row in metadata_df.iterrows():
|
136 |
example = {
|
137 |
+
"id": str(index).zfill(5),
|
138 |
+
"path": row["file_name"],
|
139 |
+
"audio": row["file_name"],
|
140 |
+
"transcription": row["transcription"],
|
141 |
+
"duration": row["duration"],
|
142 |
+
"language": row["language"],
|
143 |
+
"original_speaker_id": row["original_speaker_id"],
|
144 |
+
"session_id": row["session_id"],
|
145 |
+
"topic": row["topic"],
|
146 |
}
|
147 |
yield index, example
|
ASCEND.py.lock
ADDED
File without changes
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"train": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "train", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}, "validation": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "validation", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}, "test": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "test", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}}
|