ASCEND / ASCEND.py
holylovenia's picture
Update ASCEND.py
26e349b
raw
history blame
5.44 kB
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
from datasets import AutomaticSpeechRecognition
import datasets
import os
import pandas as pd
_CITATION = """\
@inproceedings{lovenia2021ascend,
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
publisher = {European Language Resources Association},
year = {2022},
pages = {}
}
"""
_DESCRIPTION = """\
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
"""
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
_URLS = {
"train": _URL + "train_metadata.csv",
"test": _URL + "test_metadata.csv",
"validation": _URL + "validation_metadata.csv",
"waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
}
class ASCENDConfig(datasets.BuilderConfig):
"""BuilderConfig for ASCEND."""
def __init__(self, name="main", **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ASCENDConfig, self).__init__(name, **kwargs)
class ASCEND(datasets.GeneratorBasedBuilder):
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""
BUILDER_CONFIGS = [
ASCENDConfig(
name="main",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
"duration": datasets.Value("float32"),
"language": datasets.Value("string"),
"original_speaker_id": datasets.Value("int64"),
"session_id": datasets.Value("int64"),
"topic": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_path": downloaded_files["train"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_path": downloaded_files["test"],
"wave_path": downloaded_files["waves"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"metadata_path": downloaded_files["validation"],
"wave_path": downloaded_files["waves"],
},
),
]
def _generate_examples(self, metadata_path, wave_path):
print(metadata_path)
metadata_df = pd.read_csv(metadata_path)
for index, row in metadata_df.iterrows():
example = {
"id": str(index).zfill(5),
"path": os.path.join(wave_path, row["file_name"]),
"audio": os.path.join(wave_path, row["file_name"]),
"transcription": row["transcription"],
"duration": row["duration"],
"language": row["language"],
"original_speaker_id": row["original_speaker_id"],
"session_id": row["session_id"],
"topic": row["topic"],
}
yield index, example