|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Common Voice Dataset""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{lovenia2021ascend, |
|
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation}, |
|
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others}, |
|
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France}, |
|
publisher = {European Language Resources Association}, |
|
year = {2022}, |
|
pages = {} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND" |
|
|
|
|
|
class ASCENDConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ASCEND.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
""" |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ASCENDConfig, self).__init__(name, **kwargs) |
|
|
|
|
|
class ASCEND(datasets.GeneratorBasedBuilder): |
|
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ASCENDConfig( |
|
name="train", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
ASCENDConfig( |
|
name="validation", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
ASCENDConfig( |
|
name="test", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"transcription": datasets.Value("string"), |
|
"duration": datasets.Value("float32"), |
|
"language": datasets.Value("string"), |
|
"original_speaker_id": datasets.Value("int64"), |
|
"session_id": datasets.Value("int64"), |
|
"topic": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"metadata_path": "train_metadata.csv", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"metadata_path": "test_metadata.csv", |
|
"split": "test" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"metadata_path": "validation_metadata.csv", |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, metadata_path): |
|
metadata_df = pd.read_csv(metadata_path) |
|
|
|
for index, row in metadata_df.iterrows(): |
|
example = { |
|
"id": index, |
|
"audio": row["audio"], |
|
"transcription": row["transcription"] |
|
} |
|
yield index, example |