Datasets:
Tasks:
Image-to-Text
Formats:
parquet
Size:
100K - 1M
Tags:
optical-character-recognition
humanities
handwritten-text-recognition
modern documents
contemporary documents
good quality
License:
File size: 14,081 Bytes
3a6a764 a23ea51 3a6a764 a23ea51 3a6a764 a23ea51 3a6a764 a23ea51 3a6a764 a23ea51 3a6a764 a23ea51 3a6a764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
license: cc-by-4.0
task_categories:
- image-to-text
version: "1.0.0"
language:
- fr
- de
- en
- it
- es
- oc
- la
pretty_name: CATMuS modern (or McCATMuS)
size_categories:
- 100K<n<1M
tags:
- optical-character-recognition
- humanities
- handwritten-text-recognition
- modern documents
- contemporary documents
- good quality
---
![CATMuS Modern Banner](banner_catmus_modern.png)
# Dataset Card for CATMuS Modern and Contemporary (McCATMuS)
Join our Discord to ask questions about the dataset: [![Join the Discord](https://img.shields.io/badge/CATMuS-Discord?style=flat-square&logo=discord&logoColor=%23333333&color=%235865F2)](https://discord.gg/J38xgNEsGk)
## Dataset Details
Handwritten Text Recognition (HTR) has emerged as a crucial tool for converting manuscripts images into machine-readable formats, enabling researchers and scholars to analyze vast collections efficiently. Despite significant technological progress, establishing consistent ground truth across projects for HTR tasks, particularly for complex and heterogeneous historical sources, remains nonetheless challenging.
We introduce the Consistent Approaches to Transcribing Manuscripts (CATMuS) dataset for **m**odern and **c**ontemporary manuscripts (McCATMuS), which offers:
- a uniform framework framework for annotating modern and contemporary manuscripts;
- a benchmarking environment for evaluating automatic text recognition models across multiple dimensions, enriched with metadata such as century, language, and writing technique;
- a benchmarking environment for additional tasks like script classification and dating approaches;
- a benchmarking environment for exploratory work in computer vision and digital paleography, particularly for line-based tasks including generative approaches.
Built upon datasets from institutions and projects committed to Open Science, McCATMuS provides an interoperable dataset encompassing over 180 manuscripts in 8 different languages. It includes more than 118,000 lines of text and nearly 4 million characters, covering a period from the early 16th century to the present day.
All the datasets were automatically or, when precised, manually corrected to correspond to the CATMuS guidelines, available here: https://catmus-guidelines.github.io/
<!--rephrase: The dataset's consistency in transcription approaches aims to mitigate challenges arising from the diversity in standards for medieval manuscript transcriptions,
providing a comprehensive benchmark for evaluating HTR models on historical sources. -->
### Dataset Description
- **Curated by:** Alix Chagué
<!--- **Funded by:** <!--BnF Datalab, Biblissima +, DIM PAMIR-->
- **Language(s) (NLP):** French and Middle French, Spanish, Italian, English, Latin, German, Occitan
- **License:** CC-BY 4.0
### Train
| Writing Type | Total Count | Languages and Counts |
|--------------|-------------|----------------------|
| Handwritten | 71296 | French: 65844, Spanish: 2864, German: 1940, English: 390, Italian: 258 |
| Printed | 34684 | French: 30376, Middle French: 1873, Latin: 1592, Italian: 266, Occitan: 258, German: 174, English: 85, Spanish: 60 |
| Typewritten | 298 | English: 298 |
### Validation
| Writing Type | Total Count | Languages and Counts |
|--------------|-------------|----------------------|
| Handwritten | 3833 | French: 3662, Spanish: 149, English: 21, German: 1 |
| Printed | 1825 | French: 1608, Middle French: 115, Latin: 82, Occitan: 12, Spanish: 4, English: 3, German: 1 |
| Typewritten | 18 | English: 18 |
### Test
| Writing Type | Total Count | Languages and Counts |
|--------------|-------------|----------------------|
| Handwritten | 3898 | French: 3724, Spanish: 152, English: 21, German: 1 |
| Printed | 1760 | French: 1546, Middle French: 115, Latin: 82, Occitan: 12, English: 3, Spanish: 1, German: 1 |
| Typewritten | 18 | English: 18 |
## Uses
### Direct Use
- Handwritten Text Recognition
- Date classification
- Script classification
### Out-of-Scope Use
- Text-To-Image
## Dataset Structure
- Data contains the main `split` that can be loaded through `load_dataset("CATMuS/modern")`
- Data can also be split with each manuscript represented in train, val and test using the `gen_split` columns which roughly results in a 90/5/5 split
- The image is in the `im` column, and the text in the `text` column
- Each text line is dated with the combination of `not_before` and `not_after`, the precision of the dating can very greatly depending on the available metadata
- Each text line is associated to a `genre`, a `writing_type` (printed, handwritten or typewritten), a `region_type` and a `line_type` following SegmOnto's vocabulary, a `shelfmark` identifying the documents from which the text line is extracted, and a `project` identifying the project having produced the original dataset.
- When `shelfmark` contains "nobs", it means that the documents are not associated to any known shelfmark, the shelfmark in these cells was thus created for the purpose of this metadataset.
## Annotations
### Annotation process
The annotations in this dataset result:
- for layout extraction, line extraction, typing and transcription, from the original creators of the dataset in most cases, or from automatic or manual corrections by the curator of the CATMuS modern dataset,
- for the rest of the metadata, from automatic or manual collection of the metadata by the curator of the CATMuS modern dataset.
The metadata where set generally set at document level.
The values in`region_type` and `line_type` are, as much as possible, conformant with the [SegmOnto vocabulary](https://segmonto.github.io/).
The values in `writing_type` and `genre` follow a vocabulary set for this dataset:
- possible values in `writing_type` are: `handwritten`, `printed` or `typewritten`.
- possible values in `genre` are: `document of practice`, `drama`, `narratives`, `epistolary`, `treaties`, `poetry`. There can be multiple values, in which case they are separated by semi-colons.
The detail of the annotation rules applied for the transcription of the text can be found at [https://catmus-guidelines.github.io/](https://catmus-guidelines.github.io/).
### Who are the annotators?
This list includes all the annotators identified by the producers of the datasets gathered in McCATMuS dataset.
*Collecting the names of the authors and annotators of datasets can be combersome. If you think your name was mistakenly added to the list below or if your name is missing, please accept our apologies and do get in touch!*
- Chagué, Alix
- Clérice, Thibault
- Gabay, Simon
- Pinche, Ariane
- Carrow, Jennifer
- Albert, Anaïs
- Bey, Laura
- Champougny, Kevin
- Charbonnier, Pauline
- Chiaretti, Alessandro
- Christensen, Kelly
- Cicchini, Marco
- Clavaud, Florence
- Davoury, Baudoin
- de Champs, Emmanuelle
- Dechavanne, Sylvie
- Denis, Nathalie
- Doat, Soline
- Dubourg Glatigny, Pascal
- Durand, Marc
- Elsa, Falcoz
- Fabert, Eliott
- Faure, Margaux
- Genero, Jean-Damien
- Guimarães, Ingrid
- Humeau, Maxime
- Jacsont, Pauline
Jahan, Claire
- Jaureguy, Yvan
- Le Fourner, Victoria
- Limon-Bonnet, Marie-Françoise
- Martini, Manuela
- Maurel, Perrine
- Mazoue, Anais
- Meissel, Nina
- Mikhalchuk, Anna
- Nahon, Peter
- Norindr, Jade
- Nougaret, Christine
- Ozturk, Yagmur
- Paupe, Elodie
- Pérez, Gilles
- Rebetez, Jean-Claude
- Riondet, Charles
- Rostaing, Aurélia
- Skilbeck-Gaborit, Eden
- Van Kote, Elsa
- Vanneau, Laurie
- Vlachou-Efstathiou, Malamatenia
- Weddigen, Tristan
- Wojszvzyk, Elise
- ALemoine
- ASJPeronneau
- Alcofrybas
- BeaLct
- CLbt
- Chloelsa
- DMichel
- Desauthieux
- EPerrin
- EdChamps
- GBMireille
- GPINET
- Genea78
- JMGoux
- Jideuxhemme
- LBIsabelle
- Lamotte
- MFGarreau
- MIna
- Maniet
- MarionJo
- PGambette
- PPocard
- PROMBAUT
- PaulineTest
- SCayeux
- SL.
- SLespinasse
- Silver08
- TPellé
- Valérie
- alp
- jmorvan
- lelia
- majubama
- mickael.lefevr
- sgauthier
### Software
The software used to generate this version of the dataset was built by Thibault Clérice and Alix Chagué.
### Reused datasets
All the datasets reused to create the CATMuS Modern and Contemporary dataset are listed below along with the version we used. They can also be found in the [Zotero group](https://www.zotero.org/groups/5601331/catmus_modern__contemporary) dedicated to this metadataset.
- Chagué, A. (2023). *Moonshines* (v2.0.2) [Dataset]. https://github.com/alix-tz/moonshines
- Chagué, A., Champougny, K., Meissel, N., Genero, J.-D., Skilbeck-Gaborit, E., Vanneau, L., Bey, L., Le Fourner, V., Albert, A., Riondet, C., & Martini, M. (2022). *Time Us Corpus* (v0.0.3) [Dataset]. https://doi.org/10.5281/zenodo.6230755
- Chagué, A., Clérice, T., Mazoue, A., & Van Kote, E. (2024). *CREMMA-AN-TestamentDePoilus* (v1.0.2) [Dataset]. https://doi.org/10.5281/zenodo.10177106
- Chagué, A., Clérice, T., & Van Kote, E. (2023). *CREMMA WIKIPEDIA* (v1.0.4) [Dataset]. https://doi.org/10.5281/zenodo.10666988
- Chagué, A., & Pérez, G. (2023). *Peraire Ground Truth* (v2.1.0) [Dataset]. https://doi.org/10.5281/zenodo.7185907
- Clérice, T. (2021). *CREMMA Early Modern Books* (v0.0.1) [Dataset]. https://doi.org/10.5281/zenodo.5235144
- Clérice, T., Chagué, A., Davoury, B., Doat, S., Faure, M., & Humeau, M. (2022). *CREMMA-MSS-19* (v1.0.0) [Dataset]. HTR United. https://github.com/HTR-United/CREMMA-MSS-19
- Clérice, T., Chagué, A., Davoury, B., Faure, M., Mazoue, A., & Norindr, J. (2022). *CREMMA-MSS-17* (v1.0.0) [Dataset]. HTR United. https://github.com/HTR-United/CREMMA-MSS-17
- Clérice, T., Chagué, A., & Doat, S. (2021). *CREMMA-MSS-20* (v1.0.0) [Dataset]. HTR United. https://github.com/HTR-United/CREMMA-MSS-20 (Original work published 2021)
- Gabay, S., Paupe, E., & Rebetez, J.-C. (2024). *FoNDUE-FR-MSS-17* (v1.0.0) [Dataset]. https://github.com/FoNDUE-HTR/FONDUE-FR-MSS-17
- Gabay, S., Nahon, P., Cicchini, M., Jaureguy, Y., & Chappuis, L. (2023). FoNDUE-FR-MSS-18 (Version 1.0) [Data set]. https://github.com/FoNDUE-HTR/FONDUE-FR-MSS-18
- Gabay, S., Pinche, A., Fabert, E., & Christensen, K. (2024). *Imprimés du 18e siècle (Gallicorpora)* (v0.0.17) [Dataset]. https://github.com/Gallicorpora/HTR-imprime-18e-siecle
- Gabay, S., Pinche, A., Fabert, E., Vlachou-Efstathiou, M., Humeau, M., & Christensen, K. (2023). *Imprimés du 17e siècle (Gallicorpora)* (v0.0.46) [Dataset]. https://github.com/Gallicorpora/HTR-imprime-17e-siecle
- Guimarães, I., Maurel, P., Ozturk, Y., Chagué, A., & Clérice, T. (2022). *Memorials for Jane Lathrop Stanford* (v1.0 (corrected)) [Dataset]. https://doi.org/10.5281/zenodo.6126625
- Humeau, M., & Chiaretti, A. (2022). *AraucaniaCorpus* [Dataset]. Araucania Project. https://github.com/Proyecto-Ocupacion-Araucania-UChile/HTR_Araucania_XIX
- Jacsont, P., Simon, G., & Weddigen, T. (2023). *FoNDUE for the Heinrich Wölfflin Fotosammlung of the Kunsthistorisches Institut UZH* (v1.0) [Dataset]. https://github.com/FoNDUE-HTR/FoNDUE_Wolfflin_Fotosammlung
- Jahan, C., & Gabay, S. (2021). *OCR17+—Layout analysis and text recognition for 17th c. French prints* (v1.0) [Dataset]. https://github.com/e-ditiones/OCR17plus
- Limon-Bonnet, M.-F., Chagué, A., & Rostaing, A. (2024). *Notaires de Paris—Bronod (Lectaurep)* (v1.0) [Dataset]. https://doi.org/10.5281/zenodo.10631356
- Norindr, J., Clérice, T., & Chagué, A. (2023). *HTRomance—Modern* (v0.0.3) [Dataset]. https://github.com/HTRomance-Project/modern-roman-languages
- Rostaing, A., Denis, N., & Chagué, A. (2024). *Notaires de Paris—Mariages et Divorces (Lectaurep)* (v2.0) [Dataset]. https://doi.org/10.5281/zenodo.10632594
- Rostaing, A., Durand, M., & Chagué, A. (2021). *Notaires de Paris—Répertoires (Lectaurep)* (v2.0.0) [Dataset]. https://doi.org/10.5072/zenodo.977691
- Van Kote, E., Faure, M., Norindr, J., Clérice, T., & Chagué, A. (2024). *CREMMA-MSS-18* (v0.0.1) [Dataset]. https://github.com/HTR-United/CREMMA-MSS-18
## Bias, Risks, and Limitations
The data is skewed toward French which is overly represented in the current version of the dataset.
No language is represented over all centuries and all writing type, but French has the better coverage for handwritten text lines.
Only one document is available in Spanish. Occitan is only represented in printed lines.
Since the metadata were set at document level, some lines may incorrectly be set to `handwritten` when they are in fact `printed`, and inversely. Further versions of the dataset will aim to reduce this phenomenon.
## Citation
***TBD***
Information on the creation process for this dataset can be found in several blog posts: https://alix-tz.github.io/phd/categories/catmus/
<!--- below is the README from CATMuS Medieval --->
<!--
**BibTeX:**
```tex
@unpublished{clerice:hal-04453952,
TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
URL = {https://inria.hal.science/hal-04453952},
NOTE = {working paper or preprint},
YEAR = {2024},
MONTH = Feb,
KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
HAL_ID = {hal-04453952},
HAL_VERSION = {v1},
}
```
**APA:**
> Thibault Clérice, Ariane Pinche, Malamatenia Vlachou-Efstathiou, Alix Chagué, Jean-Baptiste Camps, et al.. CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond. 2024. ⟨hal-04453952⟩
-->
## Dataset Card Contact
Alix Chagué (first.last@inria.fr)
|