File size: 3,676 Bytes
2fa581b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7a362
 
 
 
 
 
 
 
 
d35ff18
cf7a362
 
 
 
 
 
 
 
 
 
 
 
 
 
505fa74
cf7a362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f7fd5
cf7a362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35ff18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- ko
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: laion2B-multi-korean-subset
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
---
# laion2B-multi-korean-subset

## Dataset Description
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/)
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)

## About dataset
Data organized by extracting only Korean data from [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)

### Lisence
CC-BY-4.0
## Data Structure

### Data Instance

```pycon
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset")
>>> dataset
DatasetDict({
    train: Dataset({
        features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'],
        num_rows: 11376263
    })
})
```

```pycon
>>> dataset["train"].features
{'SAMPLE_ID': Value(dtype='int64', id=None),
 'URL': Value(dtype='string', id=None),
 'TEXT': Value(dtype='string', id=None),
 'HEIGHT': Value(dtype='int32', id=None),
 'WIDTH': Value(dtype='int32', id=None),
 'LICENSE': Value(dtype='string', id=None),
 'LANGUAGE': Value(dtype='string', id=None),
 'NSFW': Value(dtype='string', id=None),
 'similarity': Value(dtype='float32', id=None)}
```

### Data Size

download: 1.56 GiB<br>
generated: 2.37 GiB<br>
total: 3.93 GiB

### Data Field

- 'SAMPLE_ID': `int`
- 'URL': `string`
- 'TEXT': `string`
- 'HEIGHT': `int`
- 'WIDTH': `int`
- 'LICENSE': `string`
- 'LANGUAGE': `string`
- 'NSFW': `string`
- 'similarity': `float`

### Data Splits

|            |    train |
| ---------- | -------- |
| # of texts | 11376263 |


## Note

### Height, Width

μ΄λ―Έμ§€μ˜ κ°€λ‘œκ°€ `HEIGHT`둜, μ„Έλ‘œκ°€ `WIDTH`둜 λ˜μ–΄μžˆλŠ” 것 κ°™μŠ΅λ‹ˆλ‹€.

```pycon
>>> dataset["train"][98]
{'SAMPLE_ID': 2937471001780,
 'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png',
 'TEXT': 'μΈμ²œμ‹œκ΅μœ‘μ²­, 인천 μ‹œκ΅°κ΅¬λ°œμ „ν˜‘μ˜νšŒ  μž„μ›μ§„κ³Όμ˜ κ°„λ‹΄νšŒ 개졜',
 'HEIGHT': 640,
 'WIDTH': 321,
 'LICENSE': '?',
 'LANGUAGE': 'ko',
 'NSFW': 'UNLIKELY',
 'similarity': 0.33347243070602417}
```

![image](https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png)

### Code used to generate

```py
import csv
import re

from datasets import load_dataset
from tqdm import tqdm


pattern = re.compile(r"[κ°€-힣]")


def quote(s: str) -> str:
    s = s.replace('"""', "")
    return s


def filter_func(example) -> bool:
    lang = example.get("LANGUAGE")
    text = example.get("TEXT")
    if not isinstance(lang, str) or not isinstance(text, str):
        return False
    return lang == "ko" or pattern.search(text) is not None


file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="")

ds = load_dataset("laion/laion2B-multi", split="train", streaming=True)
dsf = ds.filter(filter_func)
header = [
    "SAMPLE_ID",
    "URL",
    "TEXT",
    "HEIGHT",
    "WIDTH",
    "LICENSE",
    "LANGUAGE",
    "NSFW",
    "similarity",
]
writer = csv.DictWriter(file, fieldnames=header)
writer.writeheader()

try:
    for data in tqdm(dsf):
        data["TEXT"] = quote(data.get("TEXT", ""))
        if data["TEXT"]:
            writer.writerow(data)
finally:
    file.close()

print("Done!")
```

이후에 `HEIGHT`λ‚˜ `WIDTH`κ°€ None인 데이터λ₯Ό μ œκ±°ν•˜κ³  μ—…λ‘œλ“œν•˜μ˜€μŠ΅λ‹ˆλ‹€.

### img2dataset

[img2dataset](https://github.com/rom1504/img2dataset)을 μ‚¬μš©ν•˜μ—¬ URL둜된 이미지듀을 데이터셋 ν˜•νƒœλ‘œ λ§Œλ“€ 수 μžˆμŠ΅λ‹ˆλ‹€.