Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
code
Size:
10K<n<100K
ArXiv:
Tags:
code
License:
File size: 12,200 Bytes
bfb7f52 79063bb ad2c9ad 79063bb 0af2549 79063bb cfee71f 0af2549 cfee71f bfb7f52 79063bb 44e1971 2e99ef7 44e1971 2e99ef7 79063bb be3d69f 2e99ef7 79063bb fb34b11 79063bb fb34b11 79063bb 6e30246 bcf4ae3 6e30246 79063bb c2910f5 0af2549 c2910f5 247ae50 c2910f5 247ae50 c2910f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license: apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- text-generation
task_ids:
- language-modeling
paperswithcode_id: taco-topics-in-algorithmic-code-generation
pretty_name: TACO
tags:
- code
dataset_info:
config_name: ALL
features:
- name: question
dtype: string
- name: solutions
dtype: string
- name: starter_code
dtype: string
- name: input_output
dtype: string
- name: difficulty
dtype: string
- name: raw_tags
dtype: string
- name: name
dtype: string
- name: source
dtype: string
- name: tags
dtype: string
- name: skill_types
dtype: string
- name: url
dtype: string
- name: Expected Auxiliary Space
dtype: string
- name: time_limit
dtype: string
- name: date
dtype: string
- name: picture_num
dtype: string
- name: memory_limit
dtype: string
- name: Expected Time Complexity
dtype: string
splits:
- name: train
num_bytes: 4239311973
num_examples: 25443
- name: test
num_bytes: 481480755
num_examples: 1000
download_size: 2419844942
dataset_size: 4720792728
configs:
- config_name: ALL
data_files:
- split: train
path: ALL/train-*
- split: test
path: ALL/test-*
---
# TACO Dataset
<img src="https://cdn-uploads.huggingface.co/production/uploads/6335113375bed9932474315e/rMxdXcC56S3FEh37oRa2s.png" width="200" height="200">
[TACO](https://github.com/FlagOpen/TACO) is a benchmark for code generation with 26443 problems. It can be used to evaluate the ability of language models to generate code from natural language specifications.
## Dataset Description
- **Repository:** https://github.com/FlagOpen/TACO/
- **Paper:** [TACO: Topics in Algorithmic COde generation dataset](https://arxiv.org/abs/2312.14852)
- **Leaderboard:** [Code Generation on CodeContests](https://paperswithcode.com/sota/code-generation-on-taco-code)
- **Point of Contact:** [Bo-Wen Zhang](mailto:bwzhang@baai.ac.cn)
## Languages
The dataset contains questions in English and code solutions in Python.
## Dataset Structure
```python
from datasets import load_dataset
load_dataset("BAAI/TACO")
DatasetDict({
train: Dataset({
features: ['question', 'solutions', 'starter_code', 'input_output', 'difficulty', 'raw_tags', 'name', 'source', 'tags', 'skill_types', 'url', 'Expected Auxiliary Space', 'time_limit', 'date', 'picture_num', 'memory_limit', 'Expected Time Complexity'],
num_rows: 25443
})
test: Dataset({
features: ['question', 'solutions', 'starter_code', 'input_output', 'difficulty', 'raw_tags', 'name', 'source', 'tags', 'skill_types', 'url', 'Expected Auxiliary Space', 'time_limit', 'date', 'picture_num', 'memory_limit', 'Expected Time Complexity'],
num_rows: 1000
})
})
```
### How to use it
You can load and iterate through the dataset with the following two lines of code for the train split:
```python
from datasets import load_dataset
import json
ds = load_dataset("BAAI/TACO", split="train")
sample = next(iter(ds))
# non-empty solutions and input_output features can be parsed from text format this way:
sample["solutions"] = json.loads(sample["solutions"])
sample["input_output"] = json.loads(sample["input_output"])
sample["raw_tags"] = eval(sample["raw_tags"])
sample["tags"] = eval(sample["tags"])
sample["skill_types"] = eval(sample["skill_types"])
print(sample)
#OUTPUT:
{
"question": "You have a deck of $n$ cards, and you'd like to reorder it to a new one.\n\nEach card has a value between $1$ and $n$ equal to $p_i$. ...",
"solutions": [
"import heapq\nfrom math import sqrt\nimport operator\nimport sys\ninf_var = 0\nif inf_var == 1:\n\tinf = open('input.txt', 'r')\nelse:\n\tinf = sys.stdin\n ...",
"t = int(input())\nfor _ in range(t):\n\tn = int(input())\n\tp = list(map(int, input().split()))\n\tans = []\n\tp1 = [-1] * (n + 1)\n\tfor i in range(n):\n\t\tp1[p[i]] = i\n\ti = n\n\twhile i:\n\t\twhile i > 0 and p1[i] == -1:\n\t\t\ti -= 1\n\t\telse:\n\t\t\tif i:\n\t\t\t\tk = 0\n\t\t\t\tfor j in range(p1[i], n):\n\t\t\t\t\tans.append(p[j])\n\t\t\t\t\tp1[p[j]] = -1\n\t\t\t\t\tk += 1\n\t\t\t\tn -= k\n\t\t\t\ti -= 1\n\t\t\telse:\n\t\t\t\tbreak\n\tprint(*ans)\n",
"import sys\n\ndef get_ints():\n\treturn map(int, sys.stdin.readline().strip().split())\n\ndef get_list():\n\treturn list(map(int, sys.stdin.readline().strip().split()))\n\ndef get_list_string():\n\treturn list(map(str, sys.stdin.readline().strip().split()))\n\ndef get_string():\n\treturn sys.stdin.readline().strip()\n\ndef get_int():\n\treturn int(sys.stdin.readline().strip())\n\ndef get_print_int(x):\n\tsys.stdout.write(str(x) + '\\n')\n\ndef get_print(x):\n\tsys.stdout.write(x + '\\n')\n\ndef get_print_int_same(x):\n\tsys.stdout.write(str(x) + ' ')\n\ndef get_print_same(x):\n\tsys.stdout.write(x + ' ')\nfrom sys import maxsize\n\ndef solve():\n\tfor _ in range(get_int()):\n\t\tn = get_int()\n\t\tarr = get_list()\n\t\ti = n - 1\n\t\tj = n - 1\n\t\ttemp = sorted(arr)\n\t\tvis = [False] * n\n\t\tans = []\n\t\twhile j >= 0:\n\t\t\tt = j\n\t\t\ttt = []\n\t\t\twhile t >= 0 and arr[t] != temp[i]:\n\t\t\t\tvis[arr[t] - 1] = True\n\t\t\t\ttt.append(arr[t])\n\t\t\t\tt -= 1\n\t\t\tvis[arr[t] - 1] = True\n\t\t\ttt.append(arr[t])\n\t\t\ttt = tt[::-1]\n\t\t\tfor k in tt:\n\t\t\t\tans.append(k)\n\t\t\tj = t - 1\n\t\t\twhile i >= 0 and vis[i]:\n\t\t\t\ti -= 1\n\t\tget_print(' '.join(map(str, ans)))\nsolve()\n",
...
],
"starter_code": "",
"input_output": {
"inputs": [
"4\n4\n1 2 3 4\n5\n1 5 2 4 3\n6\n4 2 5 3 6 1\n1\n1\n",
"4\n4\n2 1 3 4\n5\n1 5 2 4 3\n6\n4 2 5 3 6 1\n1\n1\n",
"4\n4\n2 1 3 4\n5\n1 5 2 4 3\n6\n2 4 5 3 6 1\n1\n1\n",
"4\n4\n1 2 3 4\n5\n1 5 2 4 3\n6\n4 2 5 3 6 1\n1\n1\n"
],
"outputs": [
"4 3 2 1\n5 2 4 3 1\n6 1 5 3 4 2\n1\n",
"4 3 2 1\n5 2 4 3 1\n6 1 5 3 4 2\n1\n",
"4 3 2 1\n5 2 4 3 1\n6 1 5 3 4 2\n1\n",
"\n4 3 2 1\n5 2 4 3 1\n6 1 5 3 4 2\n1\n"
]
},
"difficulty": "EASY",
"raw_tags": [
"data structures",
"greedy",
"math"
],
"name": null,
"source": "codeforces",
"tags": [
"Data structures",
"Mathematics",
"Greedy algorithms"
],
"skill_types": [
"Data structures",
"Greedy algorithms"
],
"url": "https://codeforces.com/problemset/problem/1492/B",
"Expected Auxiliary Space": null,
"time_limit": "1 second",
"date": "2021-02-23",
"picture_num": "0",
"memory_limit": "512 megabytes",
"Expected Time Complexity": null
}
```
Each sample consists of a programming problem formulation in English, some ground truth Python solutions, test cases that are defined by their inputs and outputs and function name if provided, as well as some metadata regarding the difficulty level (difficulty), topics of task (raw tags), algorithms (tags) as well as required programming skill types (skill_types) of the problem and its source.
If a sample has non empty `input_output` feature, you can read it as a dictionary with keys `inputs` and `outputs` and `fn_name` if it exists, and similarily you can parse the solutions into a list of solutions as shown in the code above.
You can also filter the dataset for the difficulty level: EASY, MEDIUM, MEDIUM_HARD, HARD and VERY_HARD, or filter the programming skill types: Amortized analysis, Bit manipulation, Complete search, Data structures, Dynamic programming, Greedy algorithms, Range queries, Sorting. Just pass the list of difficulties or skills as a list. E.g. if you want the most challenging problems, you need to select the VERY_HARD level:
```python
ds = load_dataset("BAAI/TACO", split="train", difficulties=["VERY_HARD"])
print(next(iter(ds))["question"])
```
```
#OUTPUT:
"""Let S(n) denote the number that represents the digits of n in sorted order. For example, S(1) = 1, S(5) = 5, S(50394) = 3459, S(353535) = 333555.
Given a number X, compute <image> modulo 109 + 7.
Input
The first line of input will contain the integer X (1 ≤ X ≤ 10700).
Output
Print a single integer, the answer to the question.
Examples
Input
21
Output
195
Input
345342
Output
390548434
Note
The first few values of S are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 12. The sum of these values is 195.
```
Or if you want the problems invovled with Range queries and Sorting, you need to select the skills Range queries and Sorting:
```python
ds = load_dataset("BAAI/TACO", split="train", skills=["Range queries", "Sorting"])
```
### Data Fields
|Field|Type|Description|
|---|---|---|
|question|string|problem description|
|solutions|string|some python solutions|
|input_output|string|Json string with "inputs" and "outputs" of the test cases, might also include "fn_name" the name of the function|
|difficulty|string|difficulty level of the problem|
|picture_num|string|the number of pictures in the problem|
|source|string|the source of the problem|
|url|string|url of the source of the problem|
|date|string|the date of the problem|
|starter_code|string|starter code to include in prompts|
|time_limit|string|the time consumption limit to solve the problem|
|memory_limit|string|the memory consumption limit to solve the problem|
|Expected Auxiliary Space|string|the extra auxiliary space expected to solve the problem|
|Expected Time Complexity|string|the time complexity expected to solve the problem|
|raw_tags|string|the topics of the programming task|
|tags|string|the manually annoatated algorithms needed to solve the problem|
|skill_types|string|the mapped programming skill types to solve the problem|
### Data Splits
The dataset contains a train with 25443 samples and test splits with 1000 samples.
### Dataset Statistics
* 26443 coding problems
* 1.55M verified solutions
* for tests split, the average number of test cases is 202.3
* all files have ground-truth solutions in the test split
## Dataset Creation
To create the TACO dataset, the authors manually curated problems from open-access sites where programmers share problems with each other, including Aizu
AtCoder, CodeChef, Codeforces, CodeWars, GeeksforGeeks, HackerEarth, HackerRank, Katti and LeetCode. For more details please refer to the original paper.
## License
The TACO dataset that is authored by BAAI, Shandong Normal University and Peking University is released under an [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). However, the data also includes content licensed under other permissive licenses such as MIT License, or web-crawled data which is used under the terms of the CC BY 4.0 license ([Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/legalcode)).
We gratefully acknowledge the contributions of the following:
* some AtCoder, Codeforces, CodeWars, Kattis, LeetCode material curated from APPS dataset (https://github.com/hendrycks/apps)
* some Aizu, AtCoder, CodeChef, Codeforces material curated from CodeContest dataset (https://github.com/google-deepmind/code_contests)
* Codeforces materials are sourced from http://codeforces.com.
* CodeChef materials are sourced from https://www.codechef.com.
* GeekforGeeks materials are sourced from https://www.geeksforgeeks.org
* HackerEarth materials are curated from:
[Description2Code Dataset](https://github.com/ethancaballero/description2code),
licensed under the
[MIT open source license](https://opensource.org/licenses/MIT), copyright
not specified.
* HackerRank materials are sourced from https://www.hackerrank.com. We don't know what the legal rights or data licenses of HackerRank. Please contact us if there is data license.
## Citation Information
If you find our data, or code helpful, please cite [the original paper](https://arxiv.org/abs/2312.14852):
```
@article{li2023taco,
title={TACO: Topics in Algorithmic COde generation dataset},
author={Rongao Li and Jie Fu and Bo-Wen Zhang and Tao Huang and Zhihong Sun and Chen Lyu and Guang Liu and Zhi Jin and Ge Li},
journal={arXiv preprint arXiv:2312.14852},
year={2023}
}
``` |