File size: 10,325 Bytes
bf2104d
 
 
 
 
 
 
57fe462
6af195e
bf2104d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b30503
 
 
 
 
 
 
bf2104d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326c02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2104d
 
 
 
 
 
 
 
 
9b87f22
bf2104d
c217bda
fb57336
68ee986
 
 
 
 
bf2104d
 
3b30503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2104d
 
3b30503
 
 
 
 
 
 
 
 
bf2104d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4fb4b
9a24dfc
466b3f2
 
 
 
9a24dfc
 
 
 
 
466b3f2
 
 
9a24dfc
 
32f5c61
 
 
 
 
 
9a24dfc
 
 
 
 
 
 
 
 
58eb4ae
 
 
 
 
32f5c61
9a24dfc
 
 
 
 
 
32f5c61
9a24dfc
466b3f2
bf2104d
 
9a24dfc
bf2104d
5ff66e2
 
aad8398
32f5c61
be5726f
bf2104d
9a24dfc
 
 
 
 
 
bf2104d
 
32f5c61
 
cf4fb4b
68ee986
991550a
68ee986
66f74a6
 
 
aad8398
 
68ee986
 
 
4ac75fb
 
 
a258b81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import csv
import json
import os
import random

import datasets
import pandas as pd
from PIL import Image
from torchvision.io import read_video

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{black2023vader,
      title={VADER: Video Alignment Differencing and Retrieval}, 
      author={Alexander Black and Simon Jenni and Tu Bui and Md. Mehrab Tanjim and Stefano Petrangeli and Ritwik Sinha and Viswanathan Swaminathan and John Collomosse},
      year={2023},
      eprint={2303.13193},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/AlexBlck/vader"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "cc-by-4.0"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_METADATA_URL = "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv"

_FOLDERS = {
    "all": ("full", "trimmed", "edited", "masks"),
    "no-full": ("trimmed", "edited", "masks"),
    "trimmed-edited-masks": ("trimmed", "edited", "masks"),
    "full-trimmed-edited-masks": ("full", "trimmed", "edited", "masks"),
}


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Anakin(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="all",
            version=VERSION,
            description="Full video, trimmed video, edited video, masks (if exists), and edit description",
        ),
        datasets.BuilderConfig(
            name="no-full",
            version=VERSION,
            description="Trimmed video, edited video, masks (if exists), and edit description",
        ),
        datasets.BuilderConfig(
            name="trimmed-edited-masks",
            version=VERSION,
            description="Only samples that have masks. Without full length video.",
        ),
        datasets.BuilderConfig(
            name="full-trimmed-edited-masks",
            version=VERSION,
            description="Only samples that have masks. With full length video.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "all"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if self.config.name == "all":
            features = datasets.Features(
                {
                    "full": datasets.Value("string"),
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "start-time": datasets.Value("int32"),
                    "end-time": datasets.Value("int32"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "no-full":
            features = datasets.Features(
                {
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "trimmed-edited-masks":
            features = datasets.Features(
                {
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "full-trimmed-edited-masks":
            features = datasets.Features(
                {
                    "full": datasets.Value("string"),
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "start-time": datasets.Value("int32"),
                    "end-time": datasets.Value("int32"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        metadata_dir = dl_manager.download(_METADATA_URL)
        folders = _FOLDERS[self.config.name]

        random.seed(47)
        root_url = "https://huggingface.co/datasets/AlexBlck/ANAKIN/resolve/main/"
        df = pd.read_csv(metadata_dir)
        if "full" in folders:
            df = df[df["full-available"] == True]
        if "masks" in folders:
            df = df[df["has-masks"] == True]

        ids = df["video-id"].to_list()
        random.shuffle(ids)

        train_end = int(len(df) * 0.7)
        val_end = int(len(df) * 0.8)
        split_ids = {
            datasets.Split.TRAIN: ids[:train_end],
            datasets.Split.VALIDATION: ids[train_end:val_end],
            datasets.Split.TEST: ids[val_end:],
        }

        data_dir = {}
        mask_dir = {}

        for split in [
            datasets.Split.TRAIN,
            datasets.Split.VALIDATION,
            datasets.Split.TEST,
        ]:
            data_urls = [
                {
                    f"{folder}": root_url + f"{folder}/{idx}.mp4"
                    for folder in folders
                    if folder != "masks"
                }
                for idx in split_ids[split]
            ]
            data_dir[split] = dl_manager.download(data_urls)
            mask_dir[split] = {
                idx: dl_manager.iter_archive(
                    dl_manager.download(root_url + f"masks/{idx}.zip")
                )
                for idx in split_ids[split]
            }

        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": data_dir[split],
                    "masks": mask_dir[split],
                    "df": df,
                    "ids": split_ids[split],
                    "return_time": "full" in folders,
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]

    def _generate_examples(self, files, masks, df, ids, return_time):
        for key, (idx, sample) in enumerate(zip(ids, files)):
            print(idx)
            entry = df[df["video-id"] == idx]
            print(entry)
            if entry["has-masks"].values[0]:
                sample["masks"] = [
                    {"path": p, "bytes": im.read()} for p, im in masks[idx]
                ]
            else:
                sample["masks"] = None
            sample["task"] = entry["task"].values[0]
            sample["manipulation-type"] = entry["manipulation-type"].values[0]
            sample["editor-id"] = entry["editor-id"].values[0]
            if return_time:
                sample["start-time"] = entry["start-time"].values[0]
                sample["end-time"] = entry["end-time"].values[0]
            yield key, sample