Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Size:
< 1K
Libraries:
Datasets
pandas
License:
b
stringclasses
3 values
30.83
stringlengths
1
5
0
float64
0
28
u
stringclasses
4 values
g
stringclasses
4 values
w
stringclasses
15 values
v
stringclasses
10 values
1.25
float64
0
28.5
t
stringclasses
2 values
t.1
stringclasses
2 values
01
int64
0
67
f
stringclasses
2 values
g.1
stringclasses
3 values
00202
stringlengths
1
5
0.1
int64
0
100k
+
stringclasses
2 values
a
58.67
4.46
u
g
q
h
3.04
t
t
6
f
g
00043
560
+
a
24.50
0.5
u
g
q
h
1.5
t
f
0
f
g
00280
824
+
b
27.83
1.54
u
g
w
v
3.75
t
t
5
t
g
00100
3
+
b
20.17
5.625
u
g
w
v
1.71
t
f
0
f
s
00120
0
+
b
32.08
4
u
g
m
v
2.5
t
f
0
t
g
00360
0
+
b
33.17
1.04
u
g
r
h
6.5
t
f
0
t
g
00164
31,285
+
a
22.92
11.585
u
g
cc
v
0.04
t
f
0
f
g
00080
1,349
+
b
54.42
0.5
y
p
k
h
3.96
t
f
0
f
g
00180
314
+
b
42.50
4.915
y
p
w
v
3.165
t
f
0
t
g
00052
1,442
+
b
22.08
0.83
u
g
c
h
2.165
f
f
0
t
g
00128
0
+
b
29.92
1.835
u
g
c
h
4.335
t
f
0
f
g
00260
200
+
a
38.25
6
u
g
k
v
1
t
f
0
t
g
00000
0
+
b
48.08
6.04
u
g
k
v
0.04
f
f
0
f
g
00000
2,690
+
a
45.83
10.5
u
g
q
v
5
t
t
7
t
g
00000
0
+
b
36.67
4.415
y
p
k
v
0.25
t
t
10
t
g
00320
0
+
b
28.25
0.875
u
g
m
v
0.96
t
t
3
t
g
00396
0
+
a
23.25
5.875
u
g
q
v
3.17
t
t
10
f
g
00120
245
+
b
21.83
0.25
u
g
d
h
0.665
t
f
0
t
g
00000
0
+
a
19.17
8.585
u
g
cc
h
0.75
t
t
7
f
g
00096
0
+
b
25.00
11.25
u
g
c
v
2.5
t
t
17
f
g
00200
1,208
+
b
23.25
1
u
g
c
v
0.835
t
f
0
f
s
00300
0
+
a
47.75
8
u
g
c
v
7.875
t
t
6
t
g
00000
1,260
+
a
27.42
14.5
u
g
x
h
3.085
t
t
1
f
g
00120
11
+
a
41.17
6.5
u
g
q
v
0.5
t
t
3
t
g
00145
0
+
a
15.83
0.585
u
g
c
h
1.5
t
t
2
f
g
00100
0
+
a
47.00
13
u
g
i
bb
5.165
t
t
9
t
g
00000
0
+
b
56.58
18.5
u
g
d
bb
15
t
t
17
t
g
00000
0
+
b
57.42
8.5
u
g
e
h
7
t
t
3
f
g
00000
0
+
b
42.08
1.04
u
g
w
v
5
t
t
6
t
g
00500
10,000
+
b
29.25
14.79
u
g
aa
v
5.04
t
t
5
t
g
00168
0
+
b
42.00
9.79
u
g
x
h
7.96
t
t
8
f
g
00000
0
+
b
49.50
7.585
u
g
i
bb
7.585
t
t
15
t
g
00000
5,000
+
a
36.75
5.125
u
g
e
v
5
t
f
0
t
g
00000
4,000
+
a
22.58
10.75
u
g
q
v
0.415
t
t
5
t
g
00000
560
+
b
27.83
1.5
u
g
w
v
2
t
t
11
t
g
00434
35
+
b
27.25
1.585
u
g
cc
h
1.835
t
t
12
t
g
00583
713
+
a
23.00
11.75
u
g
x
h
0.5
t
t
2
t
g
00300
551
+
b
27.75
0.585
y
p
cc
v
0.25
t
t
2
f
g
00260
500
+
b
54.58
9.415
u
g
ff
ff
14.415
t
t
11
t
g
00030
300
+
b
34.17
9.17
u
g
c
v
4.5
t
t
12
t
g
00000
221
+
b
28.92
15
u
g
c
h
5.335
t
t
11
f
g
00000
2,283
+
b
29.67
1.415
u
g
w
h
0.75
t
t
1
f
g
00240
100
+
b
39.58
13.915
u
g
w
v
8.625
t
t
6
t
g
00070
0
+
b
56.42
28
y
p
c
v
28.5
t
t
40
f
g
00000
15
+
b
54.33
6.75
u
g
c
h
2.625
t
t
11
t
g
00000
284
+
a
41.00
2.04
y
p
q
h
0.125
t
t
23
t
g
00455
1,236
+
b
31.92
4.46
u
g
cc
h
6.04
t
t
3
f
g
00311
300
+
b
41.50
1.54
u
g
i
bb
3.5
f
f
0
f
g
00216
0
+
b
23.92
0.665
u
g
c
v
0.165
f
f
0
f
g
00100
0
+
a
25.75
0.5
u
g
c
h
0.875
t
f
0
t
g
00491
0
+
b
26.00
1
u
g
q
v
1.75
t
f
0
t
g
00280
0
+
b
37.42
2.04
u
g
w
v
0.04
t
f
0
t
g
00400
5,800
+
b
34.92
2.5
u
g
w
v
0
t
f
0
t
g
00239
200
+
b
34.25
3
u
g
cc
h
7.415
t
f
0
t
g
00000
0
+
b
23.33
11.625
y
p
w
v
0.835
t
f
0
t
g
00160
300
+
b
23.17
0
u
g
cc
v
0.085
t
f
0
f
g
00000
0
+
b
44.33
0.5
u
g
i
h
5
t
f
0
t
g
00320
0
+
b
35.17
4.5
u
g
x
h
5.75
f
f
0
t
s
00711
0
+
b
43.25
3
u
g
q
h
6
t
t
11
f
g
00080
0
+
b
56.75
12.25
u
g
m
v
1.25
t
t
4
t
g
00200
0
+
b
31.67
16.165
u
g
d
v
3
t
t
9
f
g
00250
730
+
a
23.42
0.79
y
p
q
v
1.5
t
t
2
t
g
00080
400
+
a
20.42
0.835
u
g
q
v
1.585
t
t
1
f
g
00000
0
+
b
26.67
4.25
u
g
cc
v
4.29
t
t
1
t
g
00120
0
+
b
34.17
1.54
u
g
cc
v
1.54
t
t
1
t
g
00520
50,000
+
a
36.00
1
u
g
c
v
2
t
t
11
f
g
00000
456
+
b
25.50
0.375
u
g
m
v
0.25
t
t
3
f
g
00260
15,108
+
b
19.42
6.5
u
g
w
h
1.46
t
t
7
f
g
00080
2,954
+
b
35.17
25.125
u
g
x
h
1.625
t
t
1
t
g
00515
500
+
b
32.33
7.5
u
g
e
bb
1.585
t
f
0
t
s
00420
0
-
b
34.83
4
u
g
d
bb
12.5
t
f
0
t
g
?
0
-
a
38.58
5
u
g
cc
v
13.5
t
f
0
t
g
00980
0
-
b
44.25
0.5
u
g
m
v
10.75
t
f
0
f
s
00400
0
-
b
44.83
7
y
p
c
v
1.625
f
f
0
f
g
00160
2
-
b
20.67
5.29
u
g
q
v
0.375
t
t
1
f
g
00160
0
-
b
34.08
6.5
u
g
aa
v
0.125
t
f
0
t
g
00443
0
-
a
19.17
0.585
y
p
aa
v
0.585
t
f
0
t
g
00160
0
-
b
21.67
1.165
y
p
k
v
2.5
t
t
1
f
g
00180
20
-
b
21.50
9.75
u
g
c
v
0.25
t
f
0
f
g
00140
0
-
b
49.58
19
u
g
ff
ff
0
t
t
1
f
g
00094
0
-
a
27.67
1.5
u
g
m
v
2
t
f
0
f
s
00368
0
-
b
39.83
0.5
u
g
m
v
0.25
t
f
0
f
s
00288
0
-
a
?
3.5
u
g
d
v
3
t
f
0
t
g
00300
0
-
b
27.25
0.625
u
g
aa
v
0.455
t
f
0
t
g
00200
0
-
b
37.17
4
u
g
c
bb
5
t
f
0
t
s
00280
0
-
b
?
0.375
u
g
d
v
0.875
t
f
0
t
s
00928
0
-
b
25.67
2.21
y
p
aa
v
4
t
f
0
f
g
00188
0
-
b
34.00
4.5
u
g
aa
v
1
t
f
0
t
g
00240
0
-
a
49.00
1.5
u
g
j
j
0
t
f
0
t
g
00100
27
-
b
62.50
12.75
y
p
c
h
5
t
f
0
f
g
00112
0
-
b
31.42
15.5
u
g
c
v
0.5
t
f
0
f
g
00120
0
-
b
?
5
y
p
aa
v
8.5
t
f
0
f
g
00000
0
-
b
52.33
1.375
y
p
c
h
9.46
t
f
0
t
g
00200
100
-
b
28.75
1.5
y
p
c
v
1.5
t
f
0
t
g
00000
225
-
a
28.58
3.54
u
g
i
bb
0.5
t
f
0
t
g
00171
0
-
b
23.00
0.625
y
p
aa
v
0.125
t
f
0
f
g
00180
1
-
b
?
0.5
u
g
c
bb
0.835
t
f
0
t
s
00320
0
-
a
22.50
11
y
p
q
v
3
t
f
0
t
g
00268
0
-
a
28.50
1
u
g
q
v
1
t
t
2
t
g
00167
500
-
b
37.50
1.75
y
p
c
bb
0.25
t
f
0
t
g
00164
400
-

Credit Card Dataset (Teeny-Tiny Castle)

This dataset is part of a tutorial tied to the Teeny-Tiny Castle, an open-source repository containing educational tools for AI Ethics and Safety research.

How to Use

from datasets import load_dataset

dataset = load_dataset("AiresPucrs/data-credit-card", split = 'train')
Downloads last month
59