autotrain-radesky-lab-span-v1

This model is a fine-tuned version of bert-base-uncased on the datasaur-dev/datasaur-MTFiZjUwM2Q-ZWJiZDRmNGI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2518
  • Precision: 0.7854
  • Recall: 0.8385
  • F1: 0.8111
  • Accuracy: 0.9710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 455 0.2565 0.5114 0.4688 0.4891 0.9440
0.2875 2.0 910 0.3292 0.2957 0.2865 0.2910 0.9238
0.1173 3.0 1365 0.1931 0.4347 0.7448 0.5489 0.9531
0.0945 4.0 1820 0.1780 0.5147 0.7292 0.6034 0.9578
0.0559 5.0 2275 0.1924 0.5496 0.75 0.6344 0.9592
0.0412 6.0 2730 0.1673 0.6637 0.7708 0.7133 0.9654
0.0309 7.0 3185 0.1928 0.64 0.75 0.6906 0.9635
0.0231 8.0 3640 0.1938 0.6332 0.7552 0.6888 0.9643
0.0191 9.0 4095 0.1856 0.6667 0.7812 0.7194 0.9670
0.018 10.0 4550 0.2042 0.6610 0.8125 0.7290 0.9659
0.0138 11.0 5005 0.2254 0.6245 0.7969 0.7002 0.9649
0.0138 12.0 5460 0.2193 0.7318 0.8385 0.7816 0.9693
0.0104 13.0 5915 0.2287 0.6568 0.8073 0.7243 0.9643
0.0088 14.0 6370 0.2258 0.6943 0.8281 0.7553 0.9683
0.0052 15.0 6825 0.2323 0.7537 0.7969 0.7747 0.9677
0.0091 16.0 7280 0.2226 0.7067 0.8281 0.7626 0.9678
0.0039 17.0 7735 0.2152 0.7393 0.8125 0.7742 0.9696
0.006 18.0 8190 0.2687 0.7340 0.7760 0.7544 0.9672
0.0024 19.0 8645 0.2464 0.7358 0.8125 0.7723 0.9690
0.0004 20.0 9100 0.2463 0.7583 0.8333 0.7940 0.9694
0.0003 21.0 9555 0.2466 0.7805 0.8333 0.8060 0.9700
0.001 22.0 10010 0.2514 0.7822 0.8229 0.8020 0.9706
0.001 23.0 10465 0.2518 0.7854 0.8385 0.8111 0.9710
0.0002 24.0 10920 0.2586 0.7833 0.8281 0.8051 0.9705
0.0002 25.0 11375 0.2650 0.7681 0.8281 0.7970 0.9697

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 2.20.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW

Model tree for datasaur-dev/autotrain-radesky-lab-span-v1

Finetuned
(3342)
this model

Evaluation results