Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = 'datapaf/fvt_ift_rus'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map='auto'
)

chat = [
 {"role": "system", "content": "Ты AI-помощник, ответь на вопрос"},
 {"role": "user", "content": "Привет! Как дела?"},
]

templated = tokenizer.apply_chat_template(chat, tokenize=False)
encoded = tokenizer(templated, return_tensors="pt",add_special_tokens=True)
inputs = {key: tensor.to(model.device) for key, tensor in encoded.items()}

output = model.generate(
    **inputs,
    max_new_tokens=1024,
    do_sample=False,
    repetition_penalty=1.2
)

decoded_output = tokenizer.decode(
    output[0][inputs['input_ids'].size(1)+2:],
    skip_special_tokens=True
)

print(decoded_output)
Downloads last month
34
Safetensors
Model size
7.24B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.