metadata
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: darshanz/occupaion-prediction
results: []
darshanz/occupation-prediction
This model is ViT base patch16. Which is pretrained on imagenet dataset, then trained on our custom dataset which is based on occupation prediction. This dataset contains facial images of Indian people which are labeled by occupation. This model predicts the occupation of a person from the facial image of a person. This model categorizes input facial images into 5 classes: Anchor, Athlete, Doctor, Professor, and Farmer. This model gives an accuracy of 84.43%.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 70, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.4}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
---|---|---|---|---|---|---|
1.0840 | 0.6156 | 0.8813 | 0.6843 | 0.75 | 0.9700 | 0 |
0.4686 | 0.8406 | 0.9875 | 0.5345 | 0.8100 | 0.9867 | 1 |
0.2600 | 0.9312 | 0.9953 | 0.4805 | 0.8333 | 0.9800 | 2 |
0.1515 | 0.9609 | 0.9969 | 0.5071 | 0.8267 | 0.9733 | 3 |
0.0746 | 0.9875 | 1.0 | 0.4853 | 0.8500 | 0.9833 | 4 |
0.0468 | 0.9953 | 1.0 | 0.5006 | 0.8433 | 0.9733 | 5 |
0.0378 | 0.9953 | 1.0 | 0.4967 | 0.8433 | 0.9800 | 6 |
Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Tokenizers 0.12.1