darshanz's picture
Update README.md
908ff8a
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: darshanz/occupaion-prediction
    results: []

darshanz/occupation-prediction

This model is ViT base patch16. Which is pretrained on imagenet dataset, then trained on our custom dataset which is based on occupation prediction. This dataset contains facial images of Indian people which are labeled by occupation. This model predicts the occupation of a person from the facial image of a person. This model categorizes input facial images into 5 classes: Anchor, Athlete, Doctor, Professor, and Farmer. This model gives an accuracy of 84.43%.

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 70, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.4}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.0840 0.6156 0.8813 0.6843 0.75 0.9700 0
0.4686 0.8406 0.9875 0.5345 0.8100 0.9867 1
0.2600 0.9312 0.9953 0.4805 0.8333 0.9800 2
0.1515 0.9609 0.9969 0.5071 0.8267 0.9733 3
0.0746 0.9875 1.0 0.4853 0.8500 0.9833 4
0.0468 0.9953 1.0 0.5006 0.8433 0.9733 5
0.0378 0.9953 1.0 0.4967 0.8433 0.9800 6

Framework versions

  • Transformers 4.18.0
  • TensorFlow 2.8.0
  • Tokenizers 0.12.1