File size: 9,230 Bytes
c10198c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import timm
import numpy as np
import torch.nn as nn
import torch
import torch.nn.functional as F
from models.dropblock import DropBlock
from models.vit import ViT
from torchvision import models
import random

# This ResNet network was designed following the practice of the following papers:
# TADAM: Task dependent adaptive metric for improved few-shot learning (Oreshkin et al., in NIPS 2018) and
# A Simple Neural Attentive Meta-Learner (Mishra et al., in ICLR 2018).


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, drop_rate=0.0, drop_block=False, block_size=1):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.LeakyReLU(0.1)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = conv3x3(planes, planes)
        self.bn3 = nn.BatchNorm2d(planes)
        self.maxpool = nn.MaxPool2d(stride)
        self.downsample = downsample
        self.stride = stride
        self.drop_rate = drop_rate
        self.num_batches_tracked = 0
        self.drop_block = drop_block
        self.block_size = block_size
        self.DropBlock = DropBlock(block_size=self.block_size)

    def forward(self, x):
        self.num_batches_tracked += 1

        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        out = self.maxpool(out)

        if self.drop_rate > 0:
            if self.drop_block == True:
                feat_size = out.size()[2]
                keep_rate = max(1.0 - self.drop_rate / (20*2000) *
                                (self.num_batches_tracked), 1.0 - self.drop_rate)
                gamma = (1 - keep_rate) / self.block_size**2 * \
                    feat_size**2 / (feat_size - self.block_size + 1)**2
                out = self.DropBlock(out, gamma=gamma)
            else:
                out = F.dropout(out, p=self.drop_rate,
                                training=self.training, inplace=True)

        return out


class ResNet(nn.Module):

    def __init__(self, block, keep_prob=1.0, avg_pool=False, drop_rate=0.0, dropblock_size=5):
        self.inplanes = 3
        super(ResNet, self).__init__()

        self.layer1 = self._make_layer(
            block, 64, stride=2, drop_rate=drop_rate)
        self.layer2 = self._make_layer(
            block, 160, stride=2, drop_rate=drop_rate)
        self.layer3 = self._make_layer(
            block, 320, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
        self.layer4 = self._make_layer(
            block, 640, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
        if avg_pool:
            self.avgpool = nn.AvgPool2d(5, stride=1)
        self.keep_prob = keep_prob
        self.keep_avg_pool = avg_pool
        self.dropout = nn.Dropout(p=1 - self.keep_prob, inplace=False)
        self.drop_rate = drop_rate
        self.linear1_1 = nn.Linear(2560, 512)
        self.linear1_2 = nn.Linear(512, 64)
        self.linear2_1 = nn.Linear(2560, 512)
        self.linear2_2 = nn.Linear(512, 64)
        self.linear3_1 = nn.Linear(2560, 512)
        self.linear3_2 = nn.Linear(512, 64)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='leaky_relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, stride=1, drop_rate=0.0, drop_block=False, block_size=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=1, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride,
                            downsample, drop_rate, drop_block, block_size))
        self.inplanes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        if self.keep_avg_pool:
            x = self.avgpool(x)
        x = x.view(x.size(0), -1)

        # x1 = F.relu(self.linear1_1(x))
        # x1 = self.linear1_2(x1)
        # x2 = F.relu(self.linear2_1(x))
        # x2 = self.linear2_2(x2)
        # x3 = F.relu(self.linear3_1(x))
        # x3 = self.linear3_2(x3)
        # return [x1, x2, x3]
        return x
        # return x



class custom_model(nn.Module):

    def __init__(self,num_layer=5):
        super(custom_model, self).__init__()
        # self.classifier = timm.create_model('densenet121', pretrained=True)
        self.classifier = timm.create_model('tf_efficientnet_b7_ns', pretrained=True)
        # self.classifier = nn.Sequential(*list(classifier.children())[:-1])
        self.num_layer = num_layer
        # self.classifier = models.resnet34(pretrained=True, progress=True)
        # self.classifier = ViT(
        #     image_size = 32,
        #     patch_size = 3,
        #     dim = 512,
        #     depth = 6,
        #     heads = 8,
        #     mlp_dim = 1000,
        #     dropout = 0.1,
        #     emb_dropout = 0.1
        # )

        # self.bn1 = nn.BatchNorm1d(num_features=1000)
        self.bn2 = nn.BatchNorm1d(num_features=128)
        self.dropout = nn.Dropout(0.4)

        for i in range(num_layer):
            setattr(self, "linear%d_1" % i, nn.Linear(1000,512))
            setattr(self, "batch_norm%d_1" % i, nn.BatchNorm1d(num_features=512))
            setattr(self, "linear%d_2" % i, nn.Linear(512,64))
            # setattr(self, "linear%d_3" % i, nn.Linear(128,64))

        for m in self.modules():

            # if isinstance(m, nn.Conv2d):
            #     nn.init.kaiming_normal_(
            #         m.weight, mode='fan_out', nonlinearity='leaky_relu')
            # elif isinstance(m, nn.BatchNorm2d):
            #     nn.init.constant_(m.weight, 1)
            #     nn.init.constant_(m.bias, 0)

            if isinstance(m, nn.Linear):

                # m.weight = nn.parameter.Parameter(torch.randn(m.out_features,m.in_features) * torch.sqrt(torch.tensor(2/m.in_features,requires_grad = True)))
                y = m.in_features
                y = random.randint(m.in_features/2,m.in_features)
                m.weight.data.normal_(0.0, 1/np.sqrt(y))
                # m.bias.data should be 0
                # m.bias.data.fill_(0)

        self.act = nn.ReLU()

    def forward(self, x):
        x = self.classifier(x)
        feat = []

        # print(self.classifier.classifier.weight)

        # feat = torch.zeros((self.num_layer,256))
        for i in range(self.num_layer):

            x1 = self.act(getattr(self,"batch_norm%d_1" % i)(getattr(self, "linear%d_1" % i)(x)))
            x2 = getattr(self, "linear%d_2" % i)(x1)
            feat.append(x2)
            # print(getattr(self, "linear%d_1" % i).weight)
            # weights.append(getattr(self, "linear%d_1" % i).weight)


        feat = torch.stack(feat ,dim = 0)
        # weights = torch.stack(weights,dim = 0)
        # print(feat.size())
        return feat




def conv_block(in_channels, out_channels):
    '''
    returns a block conv-bn-relu-pool
    '''
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, 3, padding=1),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(),
        nn.MaxPool2d(2)
    )


class ProtoNet(nn.Module):
    '''
    Model as described in the reference paper,
    source: https://github.com/jakesnell/prototypical-networks/blob/f0c48808e496989d01db59f86d4449d7aee9ab0c/protonets/models/few_shot.py#L62-L84
    '''
    def __init__(self, x_dim=3, hid_dim=64, z_dim=64):
        super(ProtoNet, self).__init__()
        self.encoder = nn.Sequential(
            conv_block(x_dim, hid_dim),
            conv_block(hid_dim, hid_dim),
            conv_block(hid_dim, hid_dim),
            conv_block(hid_dim, z_dim),
        )

    def forward(self, x):
        x = self.encoder(x)
        return [x.view(x.size(0), -1)]


def resnet12(keep_prob=1.0, avg_pool=False,num_layer=5, **kwargs):
    """Constructs a ResNet-12 model.
    """
    # model = ResNet(BasicBlock, keep_prob=keep_prob,
    #                avg_pool=avg_pool, **kwargs)
    model = custom_model(num_layer=num_layer)
    # model = ProtoNet()

    return model