File size: 14,640 Bytes
c10198c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import sys
import torch
from torch.autograd import Variable
import torch.nn as nn
#from qpth.qp import QPFunction
import torch.nn.functional as F
def sqrt_newton_schulz(A, numIters):
dim = A.shape[0]
normA = A.mul(A).sum(dim=0).sum(dim=0).sqrt()
Y = A.div(normA.expand_as(A))
I = torch.eye(dim, dim).float().cuda()
Z = torch.eye(dim, dim).float().cuda()
for i in range(numIters):
T = 0.5 * (3.0 * I - Z.mm(Y))
Y = Y.mm(T)
Z = T.mm(Z)
# sA = Y * torch.sqrt(normA).view(batchSize, 1, 1).expand_as(A)
# sA = Y * torch.sqrt(normA).expand_as(A)
sZ = Z * 1. / torch.sqrt(normA).expand_as(A)
return sZ
def polar_decompose(input):
# square_mat = input.mm(input.transpose(0, 1))
# square_mat = square_mat/torch.norm(torch.diag(square_mat), p=1)
# ortho_mat = self.sqrt_newton_schulz(square_mat, numIters=1)
square_mat = input.transpose(0, 1).mm(input)
sA_minushalf = sqrt_newton_schulz(square_mat, 1)
ortho_mat = input.mm(sA_minushalf)
# return ortho_mat
return ortho_mat.mm(ortho_mat.transpose(0, 1))
def computeGramMatrix(A, B):
"""
Constructs a linear kernel matrix between A and B.
We assume that each row in A and B represents a d-dimensional feature vector.
Parameters:
A: a (n_batch, n, d) Tensor.
B: a (n_batch, m, d) Tensor.
Returns: a (n_batch, n, m) Tensor.
"""
assert(A.dim() == 3)
assert(B.dim() == 3)
assert(A.size(0) == B.size(0) and A.size(2) == B.size(2))
return torch.bmm(A, B.transpose(1,2))
def binv(b_mat):
"""
Computes an inverse of each matrix in the batch.
Pytorch 0.4.1 does not support batched matrix inverse.
Hence, we are solving AX=I.
Parameters:
b_mat: a (n_batch, n, n) Tensor.
Returns: a (n_batch, n, n) Tensor.
"""
id_matrix = b_mat.new_ones(b_mat.size(-1)).diag().expand_as(b_mat).cuda()
b_inv, _ = torch.gesv(id_matrix, b_mat)
return b_inv
def one_hot(indices, depth):
"""
Returns a one-hot tensor.
This is a PyTorch equivalent of Tensorflow's tf.one_hot.
Parameters:
indices: a (n_batch, m) Tensor or (m) Tensor.
depth: a scalar. Represents the depth of the one hot dimension.
Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor.
"""
encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])).cuda()
index = indices.view(indices.size()+torch.Size([1]))
encoded_indicies = encoded_indicies.scatter_(1,index,1)
return encoded_indicies
def batched_kronecker(matrix1, matrix2):
matrix1_flatten = matrix1.reshape(matrix1.size()[0], -1)
matrix2_flatten = matrix2.reshape(matrix2.size()[0], -1)
return torch.bmm(matrix1_flatten.unsqueeze(2), matrix2_flatten.unsqueeze(1)).reshape([matrix1.size()[0]] + list(matrix1.size()[1:]) + list(matrix2.size()[1:])).permute([0, 1, 3, 2, 4]).reshape(matrix1.size(0), matrix1.size(1) * matrix2.size(1), matrix1.size(2) * matrix2.size(2))
################# uncomment this if you have installed QPFunction and run Ridge
# def MetaOptNetHead_Ridge(query, support, support_labels, n_way, n_shot, lambda_reg=50.0, double_precision=True):
# """
# Fits the support set with ridge regression and
# returns the classification score on the query set.
#
# Parameters:
# query: a (tasks_per_batch, n_query, d) Tensor.
# support: a (tasks_per_batch, n_support, d) Tensor.
# support_labels: a (tasks_per_batch, n_support) Tensor.
# n_way: a scalar. Represents the number of classes in a few-shot classification task.
# n_shot: a scalar. Represents the number of support examples given per class.
# lambda_reg: a scalar. Represents the strength of L2 regularization.
# Returns: a (tasks_per_batch, n_query, n_way) Tensor.
# """
#
# tasks_per_batch = query.size(0)
# n_support = support.size(1)
# n_query = query.size(1)
#
# assert(query.dim() == 3)
# assert(support.dim() == 3)
# assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
# assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
#
# #Here we solve the dual problem:
# #Note that the classes are indexed by m & samples are indexed by i.
# #min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
#
# #where w_m(\alpha) = \sum_i \alpha^m_i x_i,
#
# #\alpha is an (n_support, n_way) matrix
# kernel_matrix = computeGramMatrix(support, support)
# kernel_matrix += lambda_reg * torch.eye(n_support).expand(tasks_per_batch, n_support, n_support).cuda()
#
# block_kernel_matrix = kernel_matrix.repeat(n_way, 1, 1) #(n_way * tasks_per_batch, n_support, n_support)
#
# support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way) # (tasks_per_batch * n_support, n_way)
# support_labels_one_hot = support_labels_one_hot.transpose(0, 1) # (n_way, tasks_per_batch * n_support)
# support_labels_one_hot = support_labels_one_hot.reshape(n_way * tasks_per_batch, n_support) # (n_way*tasks_per_batch, n_support)
#
# G = block_kernel_matrix
# e = -2.0 * support_labels_one_hot
#
# #This is a fake inequlity constraint as qpth does not support QP without an inequality constraint.
# id_matrix_1 = torch.zeros(tasks_per_batch*n_way, n_support, n_support)
# C = Variable(id_matrix_1)
# h = Variable(torch.zeros((tasks_per_batch*n_way, n_support)))
# dummy = Variable(torch.Tensor()).cuda() # We want to ignore the equality constraint.
#
# #if double_precision:
# G, e, C, h = [x.double().cuda() for x in [G, e, C, h]]
#
#
# qp_sol = QPFunction(verbose=False)(G, e.detach(), C.detach(), h.detach(), dummy.detach(), dummy.detach())
# qp_sol = qp_sol.reshape(n_way, tasks_per_batch, n_support)
# qp_sol = qp_sol.permute(1, 2, 0)
#
#
# # Compute the classification score.
# compatibility = computeGramMatrix(support, query)
# compatibility = compatibility.float()
# compatibility = compatibility.unsqueeze(3).expand(tasks_per_batch, n_support, n_query, n_way)
# qp_sol = qp_sol.reshape(tasks_per_batch, n_support, n_way)
# logits = qp_sol.float().unsqueeze(2).expand(tasks_per_batch, n_support, n_query, n_way)
# logits = logits * compatibility
# logits = torch.sum(logits, 1)
#
# return logits
def R2D2Head(query, support, support_labels, n_way, n_shot, l2_regularizer_lambda=50.0):
"""
Fits the support set with ridge regression and
returns the classification score on the query set.
This model is the classification head described in:
Meta-learning with differentiable closed-form solvers
(Bertinetto et al., in submission to NIPS 2018).
Parameters:
query: a (tasks_per_batch, n_query, d) Tensor.
support: a (tasks_per_batch, n_support, d) Tensor.
support_labels: a (tasks_per_batch, n_support) Tensor.
n_way: a scalar. Represents the number of classes in a few-shot classification task.
n_shot: a scalar. Represents the number of support examples given per class.
l2_regularizer_lambda: a scalar. Represents the strength of L2 regularization.
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
"""
tasks_per_batch = query.size(0)
n_support = support.size(1)
assert(query.dim() == 3)
assert(support.dim() == 3)
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
id_matrix = torch.eye(n_support).expand(tasks_per_batch, n_support, n_support).cuda()
# Compute the dual form solution of the ridge regression.
# W = X^T(X X^T - lambda * I)^(-1) Y
ridge_sol = computeGramMatrix(support, support) + l2_regularizer_lambda * id_matrix
ridge_sol = binv(ridge_sol)
ridge_sol = torch.bmm(support.transpose(1,2), ridge_sol)
ridge_sol = torch.bmm(ridge_sol, support_labels_one_hot)
# Compute the classification score.
# score = W X
logits = torch.bmm(query, ridge_sol)
return logits
def ProtoNetHead(query, support, support_labels, n_way, n_shot, normalize=True):
"""
Constructs the prototype representation of each class(=mean of support vectors of each class) and
returns the classification score (=L2 distance to each class prototype) on the query set.
This model is the classification head described in:
Prototypical Networks for Few-shot Learning
(Snell et al., NIPS 2017).
Parameters:
query: a (tasks_per_batch, n_query, d) Tensor.
support: a (tasks_per_batch, n_support, d) Tensor.
support_labels: a (tasks_per_batch, n_support) Tensor.
n_way: a scalar. Represents the number of classes in a few-shot classification task.
n_shot: a scalar. Represents the number of support examples given per class.
normalize: a boolean. Represents whether if we want to normalize the distances by the embedding dimension.
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
"""
tasks_per_batch = query.size(0)
n_support = support.size(1)
n_query = query.size(1)
d = query.size(2)
assert(query.dim() == 3)
assert(support.dim() == 3)
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
# From:
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/architectures/PrototypicalNetworksHead.py
#************************* Compute Prototypes **************************
labels_train_transposed = support_labels_one_hot.transpose(1,2)
prototypes = torch.bmm(labels_train_transposed, support)
# Divide with the number of examples per novel category.
prototypes = prototypes.div(
labels_train_transposed.sum(dim=2, keepdim=True).expand_as(prototypes)
)
# Distance Matrix Vectorization Trick
AB = computeGramMatrix(query, prototypes)
AA = (query * query).sum(dim=2, keepdim=True)
BB = (prototypes * prototypes).sum(dim=2, keepdim=True).reshape(tasks_per_batch, 1, n_way)
logits = AA.expand_as(AB) - 2 * AB + BB.expand_as(AB)
logits = -logits
if normalize:
logits = logits / d
return logits
def SubspaceNetHead(query, support, support_labels, n_way, n_shot, normalize=True):
"""
Constructs the subspace representation of each class(=mean of support vectors of each class) and
returns the classification score (=L2 distance to each class prototype) on the query set.
Our algorithm using subspaces here
Parameters:
query: a (tasks_per_batch, n_query, d) Tensor.
support: a (tasks_per_batch, n_support, d) Tensor.
support_labels: a (tasks_per_batch, n_support) Tensor.
n_way: a scalar. Represents the number of classes in a few-shot classification task.
n_shot: a scalar. Represents the number of support examples given per class.
normalize: a boolean. Represents whether if we want to normalize the distances by the embedding dimension.
Returns: a (tasks_per_batch, n_query, n_way) Tensor.
"""
tasks_per_batch = query.size(0)
n_support = support.size(1)
n_query = query.size(1)
d = query.size(2)
assert(query.dim() == 3)
assert(support.dim() == 3)
assert(query.size(0) == support.size(0) and query.size(2) == support.size(2))
assert(n_support == n_way * n_shot) # n_support must equal to n_way * n_shot
support_labels_one_hot = one_hot(support_labels.view(tasks_per_batch * n_support), n_way)
#support_labels_one_hot = support_labels_one_hot.view(tasks_per_batch, n_support, n_way)
support_reshape = support.view(tasks_per_batch * n_support, -1)
support_labels_reshaped = support_labels.contiguous().view(-1)
class_representatives = []
for nn in range(n_way):
idxss = torch.nonzero((support_labels_reshaped == nn),as_tuple=False)
all_support_perclass = support_reshape[idxss, :]
class_representatives.append(all_support_perclass.view(tasks_per_batch, n_shot, -1))
class_representatives = torch.stack(class_representatives)
class_representatives = class_representatives.transpose(0, 1) #tasks_per_batch, n_way, n_support, -1
class_representatives = class_representatives.transpose(2, 3).contiguous().view(tasks_per_batch*n_way, -1, n_shot)
dist = []
for cc in range(tasks_per_batch*n_way):
batch_idx = cc//n_way
qq = query[batch_idx]
uu, _, _ = torch.svd(class_representatives[cc].double())
uu = uu.float()
subspace = uu[:, :n_shot-1].transpose(0, 1)
projection = subspace.transpose(0, 1).mm(subspace.mm(qq.transpose(0, 1))).transpose(0, 1)
dist_perclass = torch.sum((qq - projection)**2, dim=-1)
dist.append(dist_perclass)
dist = torch.stack(dist).view(tasks_per_batch, n_way, -1).transpose(1, 2)
logits = -dist
if normalize:
logits = logits / d
return logits
class ClassificationHead(nn.Module):
def __init__(self, base_learner='MetaOptNet', enable_scale=True):
super(ClassificationHead, self).__init__()
if ('Subspace' in base_learner):
self.head = SubspaceNetHead
elif ('Ridge' in base_learner):
self.head = MetaOptNetHead_Ridge
elif ('R2D2' in base_learner):
self.head = R2D2Head
elif ('Proto' in base_learner):
self.head = ProtoNetHead
else:
print ("Cannot recognize the base learner type")
assert(False)
# Add a learnable scale
self.enable_scale = enable_scale
self.scale = nn.Parameter(torch.FloatTensor([1.0]))
def forward(self, query, support, support_labels, n_way, n_shot, **kwargs):
if self.enable_scale:
return self.scale * self.head(query, support, support_labels, n_way, n_shot, **kwargs)
else:
return self.head(query, support, support_labels, n_way, n_shot, **kwargs)
|