my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2754
- Precision: 0.56
- Recall: 0.2854
- F1: 0.3781
- Accuracy: 0.9407
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2826 | 0.5246 | 0.2475 | 0.3363 | 0.9384 |
No log | 2.0 | 426 | 0.2754 | 0.56 | 0.2854 | 0.3781 | 0.9407 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train danstinga/my_awesome_wnut_model
Evaluation results
- Precision on wnut_17test set self-reported0.560
- Recall on wnut_17test set self-reported0.285
- F1 on wnut_17test set self-reported0.378
- Accuracy on wnut_17test set self-reported0.941