Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +71 -72
README.md CHANGED
@@ -1,72 +1,71 @@
1
- ---
2
- license: afl-3.0
3
- language: "es"
4
-
5
- tags:
6
- - generated_from_trainer
7
- - sentiment
8
- - emotion
9
- widget:
10
- - text: "La vida no merece la pena"
11
- example_title: "Ejemplo 1"
12
- - text: "Para vivir así lo mejor es estar muerto"
13
- example_title: "Ejemplo 2"
14
- - text: "me siento triste por no poder viajar"
15
- example_title: "Ejemplo 3"
16
- - text: "Quiero terminar con todo"
17
- example_title: "Ejemplo 4"
18
- - text: "Disfruto de la vista"
19
- example_title: "Ejemplo 5"
20
-
21
- metrics:
22
- - accuracy
23
- model-index:
24
- - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
25
- results: []
26
- ---
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
- # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
30
- This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset.
31
- It achieves the following results on the evaluation set:
32
- - Loss: 0.0458
33
- - Accuracy: 0.9916
34
- ## Model description
35
- More information needed
36
- ## Intended uses & limitations
37
- More information needed
38
- ## Training and evaluation data
39
- More information needed
40
- ## Training procedure
41
- ### Training hyperparameters
42
- The following hyperparameters were used during training:
43
- - learning_rate: 2e-05
44
- - train_batch_size: 32
45
- - eval_batch_size: 32
46
- - lr_scheduler_type: linear
47
- - num_epochs: 15
48
- ### Training results
49
- | Training Loss | Epoch | Validation Loss | Accuracy |
50
- |:-------------:|:-----:|:---------------:|:--------:|
51
- | 0.161100 | 1.0 | 0.133057 | 0.952718 |
52
- | 0.134500 | 2.0 | 0.110966 | 0.960804 |
53
- | 0.108500 | 3.0 | 0.086417 | 0.970835 |
54
- | 0.099400 | 4.0 | 0.073618 | 0.974856 |
55
- | 0.090500 | 5.0 | 0.065231 | 0.979629 |
56
- | 0.080700 | 6.0 | 0.060849 | 0.982324 |
57
- | 0.069200 | 7.0 | 0.054718 | 0.986125 |
58
- | 0.060400 | 8.0 | 0.051153 | 0.985948 |
59
- | 0.048200 | 9.0 | 0.045747 | 0.989748 |
60
- | 0.045500 | 10.0 | 0.049992 | 0.988069 |
61
- | 0.043400 | 11.0 | 0.046325 | 0.990234 |
62
- | 0.034300 | 12.0 | 0.050746 | 0.989792 |
63
- | 0.032900 | 13.0 | 0.043434 | 0.991737 |
64
- | 0.028400 | 14.0 | 0.045003 | 0.991869 |
65
- | 0.022300 | 15.0 | 0.045819 | 0.991648 |
66
-
67
-
68
- ### Framework versions
69
- - Transformers 4.17.0
70
- - Pytorch 1.10.0+cu111
71
- - Datasets 2.0.0
72
- - Tokenizers 0.11.6
 
1
+ ---
2
+ language: es
3
+ license: afl-3.0
4
+ tags:
5
+ - generated_from_trainer
6
+ - sentiment
7
+ - emotion
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: La vida no merece la pena
12
+ example_title: Ejemplo 1
13
+ - text: Para vivir así lo mejor es estar muerto
14
+ example_title: Ejemplo 2
15
+ - text: me siento triste por no poder viajar
16
+ example_title: Ejemplo 3
17
+ - text: Quiero terminar con todo
18
+ example_title: Ejemplo 4
19
+ - text: Disfruto de la vista
20
+ example_title: Ejemplo 5
21
+ base_model: mrm8488/electricidad-small-discriminator
22
+ model-index:
23
+ - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
24
+ results: []
25
+ ---
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+ # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
29
+ This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 0.0458
32
+ - Accuracy: 0.9916
33
+ ## Model description
34
+ More information needed
35
+ ## Intended uses & limitations
36
+ More information needed
37
+ ## Training and evaluation data
38
+ More information needed
39
+ ## Training procedure
40
+ ### Training hyperparameters
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 15
47
+ ### Training results
48
+ | Training Loss | Epoch | Validation Loss | Accuracy |
49
+ |:-------------:|:-----:|:---------------:|:--------:|
50
+ | 0.161100 | 1.0 | 0.133057 | 0.952718 |
51
+ | 0.134500 | 2.0 | 0.110966 | 0.960804 |
52
+ | 0.108500 | 3.0 | 0.086417 | 0.970835 |
53
+ | 0.099400 | 4.0 | 0.073618 | 0.974856 |
54
+ | 0.090500 | 5.0 | 0.065231 | 0.979629 |
55
+ | 0.080700 | 6.0 | 0.060849 | 0.982324 |
56
+ | 0.069200 | 7.0 | 0.054718 | 0.986125 |
57
+ | 0.060400 | 8.0 | 0.051153 | 0.985948 |
58
+ | 0.048200 | 9.0 | 0.045747 | 0.989748 |
59
+ | 0.045500 | 10.0 | 0.049992 | 0.988069 |
60
+ | 0.043400 | 11.0 | 0.046325 | 0.990234 |
61
+ | 0.034300 | 12.0 | 0.050746 | 0.989792 |
62
+ | 0.032900 | 13.0 | 0.043434 | 0.991737 |
63
+ | 0.028400 | 14.0 | 0.045003 | 0.991869 |
64
+ | 0.022300 | 15.0 | 0.045819 | 0.991648 |
65
+
66
+
67
+ ### Framework versions
68
+ - Transformers 4.17.0
69
+ - Pytorch 1.10.0+cu111
70
+ - Datasets 2.0.0
71
+ - Tokenizers 0.11.6