File size: 3,332 Bytes
a8c7b51
cd99d1e
 
 
4e2daa4
 
 
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
4e2daa4
b1a4483
7739e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
DISCLAIMER: **For those of you who are downloading this model, it is not finished, the results are poor.** 



Question Answering Model applying fine tuning to a GPT2 text generator model in a Catalan Dataset "projecte-aina/catalanqa".

Results over the first epoch

200it [01:14,  2.29it/s]Train: wpb=10, num_updates=200, accuracy=2.5, loss=0.97

500it [02:57,  3.06it/s]Train: wpb=10, num_updates=500, accuracy=3.1, loss=0.98

1000it [05:47,  2.72it/s]Train: wpb=10, num_updates=1000, accuracy=3.7, loss=0.91

2000it [11:29,  3.32it/s]Train: wpb=10, num_updates=2000, accuracy=3.7, loss=0.85

3000it [16:48,  3.90it/s]Train: wpb=10, num_updates=3000, accuracy=3.7, loss=0.82

4000it [22:10,  3.06it/s]Train: wpb=10, num_updates=4000, accuracy=3.9, loss=0.79

5000it [27:24,  3.50it/s]Train: wpb=10, num_updates=5000, accuracy=4.1, loss=0.77

6000it [32:41,  2.19it/s]Train: wpb=10, num_updates=6000, accuracy=4.5, loss=0.76

7000it [37:56,  3.03it/s]Train: wpb=10, num_updates=7000, accuracy=4.6, loss=0.75

8000it [43:06,  3.73it/s]Train: wpb=10, num_updates=8000, accuracy=4.8, loss=0.74

9000it [48:28,  2.85it/s]Train: wpb=10, num_updates=9000, accuracy=4.9, loss=0.73

10000it [53:43,  2.89it/s]Train: wpb=10, num_updates=10000, accuracy=5.1, loss=0.73

11000it [59:09,  3.10it/s]Train: wpb=10, num_updates=11000, accuracy=5.2, loss=0.73

12000it [1:04:37,  2.64it/s]Train: wpb=10, num_updates=12000, accuracy=5.3, loss=0.72

13000it [1:10:02,  2.66it/s]Train: wpb=10, num_updates=13000, accuracy=5.4, loss=0.72

14000it [1:15:15,  2.68it/s]Train: wpb=10, num_updates=14000, accuracy=5.4, loss=0.72

14150it [1:16:05,  3.10it/s]

Train: wpb=9, num_updates=14150, accuracy=5.4, loss=0.72

| epoch 000 | train accuracy=5.4%, train loss=0.72

| epoch 000 | valid accuracy=7.6%, valid loss=0.69


200it [01:16,  2.21it/s]Train: wpb=10, num_updates=200, accuracy=4.5, loss=0.68

500it [03:02,  2.94it/s]Train: wpb=10, num_updates=500, accuracy=4.3, loss=0.74

1000it [05:59,  2.60it/s]Train: wpb=10, num_updates=1000, accuracy=4.9, loss=0.74

2000it [11:53,  3.18it/s]Train: wpb=10, num_updates=2000, accuracy=4.8, loss=0.74

3000it [17:24,  3.80it/s]Train: wpb=10, num_updates=3000, accuracy=4.8, loss=0.73

4000it [22:58,  2.96it/s]Train: wpb=10, num_updates=4000, accuracy=4.9, loss=0.72

5000it [28:23,  3.43it/s]Train: wpb=10, num_updates=5000, accuracy=5.0, loss=0.71

6000it [33:52,  2.15it/s]Train: wpb=10, num_updates=6000, accuracy=5.2, loss=0.70

7000it [39:18,  2.92it/s]Train: wpb=10, num_updates=7000, accuracy=5.3, loss=0.70

8000it [44:39,  3.63it/s]Train: wpb=10, num_updates=8000, accuracy=5.4, loss=0.69

9000it [50:13,  2.74it/s]Train: wpb=10, num_updates=9000, accuracy=5.5, loss=0.69

10000it [55:39,  2.84it/s]Train: wpb=10, num_updates=10000, accuracy=5.7, loss=0.69

11000it [1:01:16,  3.00it/s]Train: wpb=10, num_updates=11000, accuracy=5.7, loss=0.69

12000it [1:06:57,  2.54it/s]Train: wpb=10, num_updates=12000, accuracy=5.8, loss=0.69

13000it [1:12:33,  2.56it/s]Train: wpb=10, num_updates=13000, accuracy=5.8, loss=0.69

14000it [1:17:58,  2.56it/s]Train: wpb=10, num_updates=14000, accuracy=5.9, loss=0.69

14150it [1:18:49,  2.99it/s]

Train: wpb=9, num_updates=14150, accuracy=5.9, loss=0.69

| epoch 001 | train accuracy=5.9%, train loss=0.69

| epoch 001 | valid accuracy=7.7%, valid loss=0.69