File size: 3,332 Bytes
a8c7b51 cd99d1e 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 4e2daa4 b1a4483 7739e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
DISCLAIMER: **For those of you who are downloading this model, it is not finished, the results are poor.**
Question Answering Model applying fine tuning to a GPT2 text generator model in a Catalan Dataset "projecte-aina/catalanqa".
Results over the first epoch
200it [01:14, 2.29it/s]Train: wpb=10, num_updates=200, accuracy=2.5, loss=0.97
500it [02:57, 3.06it/s]Train: wpb=10, num_updates=500, accuracy=3.1, loss=0.98
1000it [05:47, 2.72it/s]Train: wpb=10, num_updates=1000, accuracy=3.7, loss=0.91
2000it [11:29, 3.32it/s]Train: wpb=10, num_updates=2000, accuracy=3.7, loss=0.85
3000it [16:48, 3.90it/s]Train: wpb=10, num_updates=3000, accuracy=3.7, loss=0.82
4000it [22:10, 3.06it/s]Train: wpb=10, num_updates=4000, accuracy=3.9, loss=0.79
5000it [27:24, 3.50it/s]Train: wpb=10, num_updates=5000, accuracy=4.1, loss=0.77
6000it [32:41, 2.19it/s]Train: wpb=10, num_updates=6000, accuracy=4.5, loss=0.76
7000it [37:56, 3.03it/s]Train: wpb=10, num_updates=7000, accuracy=4.6, loss=0.75
8000it [43:06, 3.73it/s]Train: wpb=10, num_updates=8000, accuracy=4.8, loss=0.74
9000it [48:28, 2.85it/s]Train: wpb=10, num_updates=9000, accuracy=4.9, loss=0.73
10000it [53:43, 2.89it/s]Train: wpb=10, num_updates=10000, accuracy=5.1, loss=0.73
11000it [59:09, 3.10it/s]Train: wpb=10, num_updates=11000, accuracy=5.2, loss=0.73
12000it [1:04:37, 2.64it/s]Train: wpb=10, num_updates=12000, accuracy=5.3, loss=0.72
13000it [1:10:02, 2.66it/s]Train: wpb=10, num_updates=13000, accuracy=5.4, loss=0.72
14000it [1:15:15, 2.68it/s]Train: wpb=10, num_updates=14000, accuracy=5.4, loss=0.72
14150it [1:16:05, 3.10it/s]
Train: wpb=9, num_updates=14150, accuracy=5.4, loss=0.72
| epoch 000 | train accuracy=5.4%, train loss=0.72
| epoch 000 | valid accuracy=7.6%, valid loss=0.69
200it [01:16, 2.21it/s]Train: wpb=10, num_updates=200, accuracy=4.5, loss=0.68
500it [03:02, 2.94it/s]Train: wpb=10, num_updates=500, accuracy=4.3, loss=0.74
1000it [05:59, 2.60it/s]Train: wpb=10, num_updates=1000, accuracy=4.9, loss=0.74
2000it [11:53, 3.18it/s]Train: wpb=10, num_updates=2000, accuracy=4.8, loss=0.74
3000it [17:24, 3.80it/s]Train: wpb=10, num_updates=3000, accuracy=4.8, loss=0.73
4000it [22:58, 2.96it/s]Train: wpb=10, num_updates=4000, accuracy=4.9, loss=0.72
5000it [28:23, 3.43it/s]Train: wpb=10, num_updates=5000, accuracy=5.0, loss=0.71
6000it [33:52, 2.15it/s]Train: wpb=10, num_updates=6000, accuracy=5.2, loss=0.70
7000it [39:18, 2.92it/s]Train: wpb=10, num_updates=7000, accuracy=5.3, loss=0.70
8000it [44:39, 3.63it/s]Train: wpb=10, num_updates=8000, accuracy=5.4, loss=0.69
9000it [50:13, 2.74it/s]Train: wpb=10, num_updates=9000, accuracy=5.5, loss=0.69
10000it [55:39, 2.84it/s]Train: wpb=10, num_updates=10000, accuracy=5.7, loss=0.69
11000it [1:01:16, 3.00it/s]Train: wpb=10, num_updates=11000, accuracy=5.7, loss=0.69
12000it [1:06:57, 2.54it/s]Train: wpb=10, num_updates=12000, accuracy=5.8, loss=0.69
13000it [1:12:33, 2.56it/s]Train: wpb=10, num_updates=13000, accuracy=5.8, loss=0.69
14000it [1:17:58, 2.56it/s]Train: wpb=10, num_updates=14000, accuracy=5.9, loss=0.69
14150it [1:18:49, 2.99it/s]
Train: wpb=9, num_updates=14150, accuracy=5.9, loss=0.69
| epoch 001 | train accuracy=5.9%, train loss=0.69
| epoch 001 | valid accuracy=7.7%, valid loss=0.69 |