metadata
license: apache-2.0
language:
- en
ARCHIVED.
Download from original repo: https://huggingface.co/openlm-research/open_llama_3b_600bt_preview
I made a few PRs to the original repo to include my changes!
Original model from https://huggingface.co/openlm-research/open_llama_3b_600bt_preview. Example below edited from https://github.com/openlm-research/open_llama
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "openlm-research/open_llama_3b_600bt_preview"
fast_model_name = "danielhanchen/open_llama_3b_600bt_preview"
tokenizer = AutoTokenizer.from_pretrained(fast_model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype = torch.float16, device_map = "auto")
prompt = "Q: What is the largest animal?\nA:"
input_ids = tokenizer(prompt, return_tensors = "pt").input_ids
print( tokenizer.decode( model.generate( input_ids, max_new_tokens = 32).ravel() ) )
This repo includes:
- Ported
LlamaTokenizer
toLlamaTokenizerFast
via a few lines of code. Loading viaAutoTokenizer
takes 4 to 5 minutes. Now, a few seconds! Essentially the porting is done via the below code:
# from huggingface_hub import notebook_login
# notebook_login()
from transformers import LlamaTokenizerFast
from tokenizers import AddedToken
tokenizer = LlamaTokenizerFast.from_pretrained(
"openlm-research/open_llama_3b_600bt_preview",
add_bos_token = True,
add_eos_token = False, # Original LLaMA is False -> add </s> during processing.
bos_token = AddedToken("<s>", single_word = True),
eos_token = AddedToken("</s>", single_word = True),
unk_token = AddedToken("<unk>", single_word = True),
pad_token = AddedToken("<unk>", single_word = True)
)
tokenizer.push_to_hub("open_llama_3b_600bt_preview")
AutoTokenizer
does not recognize the BOS, EOS and UNK tokens. Weirdly<unk>
ie the 0 token was added instead of the<s>
or</s>
token.- Manually added BOS
<s>
, EOS</s>
, UNK<unk>
tokens, with PAD (padding) being also the<unk>
token.