File size: 2,920 Bytes
f3c23b2 5360e29 f3c23b2 5360e29 f3c23b2 5360e29 f3c23b2 5360e29 f3c23b2 5360e29 f3c23b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9399
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1679 | 1.0 | 113 | 2.0910 | 0.38 |
| 1.4665 | 2.0 | 226 | 1.4798 | 0.53 |
| 1.2128 | 3.0 | 339 | 1.1715 | 0.64 |
| 0.7499 | 4.0 | 452 | 0.9591 | 0.68 |
| 0.6869 | 5.0 | 565 | 0.8078 | 0.76 |
| 0.3399 | 6.0 | 678 | 0.7513 | 0.81 |
| 0.3071 | 7.0 | 791 | 0.6606 | 0.84 |
| 0.0791 | 8.0 | 904 | 0.6416 | 0.84 |
| 0.1047 | 9.0 | 1017 | 0.7613 | 0.82 |
| 0.0784 | 10.0 | 1130 | 0.8558 | 0.82 |
| 0.0097 | 11.0 | 1243 | 0.9087 | 0.82 |
| 0.0071 | 12.0 | 1356 | 0.9155 | 0.83 |
| 0.0052 | 13.0 | 1469 | 0.9210 | 0.85 |
| 0.0044 | 14.0 | 1582 | 0.9543 | 0.84 |
| 0.0035 | 15.0 | 1695 | 0.9726 | 0.85 |
| 0.0032 | 16.0 | 1808 | 0.9183 | 0.84 |
| 0.0029 | 17.0 | 1921 | 0.9181 | 0.83 |
| 0.0027 | 18.0 | 2034 | 0.9575 | 0.84 |
| 0.0027 | 19.0 | 2147 | 0.9427 | 0.83 |
| 0.0026 | 20.0 | 2260 | 0.9399 | 0.83 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|