File size: 9,163 Bytes
2314f5b
a4c76cc
 
929b4d1
a4c76cc
929b4d1
 
 
 
145e71f
632c89b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314f5b
 
929b4d1
2314f5b
 
929b4d1
2314f5b
929b4d1
824c899
84ac753
1f0c4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314f5b
929b4d1
824c899
1f0c4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7647fcf
2314f5b
929b4d1
 
 
2314f5b
 
 
929b4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632c89b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
---
language:
- en
license: apache-2.0
library_name: transformers
datasets:
- Intel/orca_dpo_pairs
- wikipedia
- Open-Orca/OpenOrca
inference: false
model-index:
- name: phi-2-upscaled-4B-instruct-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 22.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 28.68
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.8
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 40.92
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.76
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=daekeun-ml/phi-2-upscaled-4B-instruct-v0.1
      name: Open LLM Leaderboard
---

# phi-2-upscaled-4B-instruct-v0.1

## Model Details
This model is a model that performed continued pre-training and fine-tuning (instruction tuning) using the depth up-scaling (DUS) technique disclosed by Upstage.

### DUS(Depth Up-Scaling) and continued pre-training
Similar to the methodology disclosed in the paper, we expanded from 32 transformer blocks to 48 blocks and then continued pre-training with the public dataset. Pre-training was performed for 3 days using 4 `ml.g5.48xlarge` instances from AWS (NVIDIA A10G GPU x 32ea). For pre-training, we used a sample set from Wikipedia.
Note that performance is not guaranteed since only a small number of datasets were used for the experiment. The number of samples for training set is just around 1.5 million after tokenization.
For distributed training, all weights were trained without adapter techniques, and sharding parallelization was performed with ZeRO-2. The presets are as follows.

```json
{
    "fp16": {
        "enabled": "auto",
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
    
    "bf16": {
        "enabled": "auto"
    },    

    "optimizer": {
        "type": "AdamW",
        "params": {
            "lr": "auto",
            "betas": "auto",
            "eps": "auto",
            "weight_decay": "auto"
        }
    },

    "scheduler": {
        "type": "WarmupLR",
        "params": {
            "warmup_min_lr": "auto",
            "warmup_max_lr": "auto",
            "warmup_num_steps": "auto"
        }
    },

    "zero_optimization": {
        "stage": 2,
        "allgather_partitions": true,
        "allgather_bucket_size": 2e8,
        "overlap_comm": true,
        "reduce_scatter": true,
        "reduce_bucket_size": 2e8,
        "contiguous_gradients": true,
        "cpu_offload": true
    },

    "gradient_accumulation_steps": "auto",
    "gradient_clipping": "auto",
    "train_batch_size": "auto",
    "train_micro_batch_size_per_gpu": "auto"
}
```

Some hyperparameters are listed below.
```
batch_size: 2
num_epochs: 1
learning_rate: 3e-4
gradient_accumulation_steps: 8
lr_scheduler_type: "linear"
group_by_length: False
```

### Fine-tuning
After performing pre-training, instruction tuning and alignment tuning were performed sequentially. This process only took about 10 hours using AWS `ml.g5.24xlarge` (NVIDIA A10G GPU x 4ea). The dataset used for instruction tuning is a sample set of the OpenOrca dataset, and the dataset used for alignment tuning is Intel's orca_dpo_pairs dataset.
All fine-tuning was learned using QLoRA, and the batch sizes were set to 3 and 1, respectively. We used 1,024 for the context length. 2,048 is also possible, but applying DPO often runs out of memory on 24GB GPU memory, so we settled on 1,024.
Please see below for relevant code snippets.

```python
peft_config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "fc1", "fc2"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
training_arguments = TrainingArguments(
    output_dir="logs",
    num_train_epochs=1,
    per_device_train_batch_size=batch_size,
    gradient_accumulation_steps=4,
    optim="paged_adamw_8bit",
    learning_rate=3e-4,
    weight_decay=0.001,
    bf16=True,
    max_grad_norm=0.3,
    max_steps=-1,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="cosine",
    report_to="wandb", ...
)
```

### References
- Base model: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
- Paper: [SOLAR 10.7B](https://arxiv.org/abs/2312.15166)

## How to Get Started with the Model

Since this model used ChatGPT's ChatML template, <im_start> and <im_end> tokens were added.
You can use Hugging Face's chat template to create the prompt, but you can also create the prompt yourself with the code snippet below.

```python
def create_inference_prompt(text):
     string = f"""<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
{text}<|im_end|>
<|im_start|>assistant
"""
     return string
```

If you want to simply see the inference results, please use the code snippet below.

```python
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
torch.set_default_device("cuda")
model_path = "daekeun-ml/phi-2-upscaled-4B-instruct-v0.1"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype="auto",
    trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(
    model_path, 
    use_fast=True, 
    trust_remote_code=True
)

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful AI assistant. Generate appropriate answers to given questions."},
    {"role": "user", "content": "What is a Large Language Model?"}
]

prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.5, repetition_penalty=1.2)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

## Notes 

### License

Apache 2.0; The license of phi-2 is MIT, but the license of the orca dataset used for training is apache 2.0. 

### Caution
This model was created as a personal experiment, unrelated to the organization I work for. The model may not operate correctly because separate verification was not performed. Please be careful unless it is for personal experimentation or PoC (Proof of Concept)!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_daekeun-ml__phi-2-upscaled-4B-instruct-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |28.45|
|AI2 Reasoning Challenge (25-Shot)|22.95|
|HellaSwag (10-Shot)              |28.68|
|MMLU (5-Shot)                    |26.80|
|TruthfulQA (0-shot)              |40.92|
|Winogrande (5-shot)              |50.59|
|GSM8k (5-shot)                   | 0.76|