File size: 2,258 Bytes
7c3c5a9 327fc78 7c3c5a9 327fc78 7c3c5a9 327fc78 7c3c5a9 327fc78 7c3c5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
datasets:
- ctkfacts
- squad2
languages:
- cs
license: cc-by-sa-4.0
tags:
- natural-language-inference
---
# ๐ฆพ xlm-roberta-large-squad2-ctkfacts
## ๐งฐ Usage
### ๐ค Using Huggingface `transformers`
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-squad2-ctkfacts")
tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-squad2-ctkfacts")
```
### ๐พ Using UKPLab `sentence_transformers` `CrossEncoder`
The model was trained using the `CrossEncoder` API and we recommend it for its usage.
```python
from sentence_transformers.cross_encoder import CrossEncoder
model = CrossEncoder('ctu-aic/xlm-roberta-large-squad2-ctkfacts')
scores = model.predict([["My first context.", "My first hypothesis."],
["Second context.", "Hypothesis."]])
```
## ๐ณ Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
## ๐ฌ Authors
The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz))
The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)).
## ๐ License
[cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0)
## ๐ฌ Citation
If you find this model helpful, feel free to cite our publication:
```
@article{DBLP:journals/corr/abs-2201-11115,
author = {Jan Drchal and
Herbert Ullrich and
Martin R{'{y}}par and
Hana Vincourov{'{a}} and
V{'{a}}clav Moravec},
title = {CsFEVER and CTKFacts: Czech Datasets for Fact Verification},
journal = {CoRR},
volume = {abs/2201.11115},
year = {2022},
url = {https://arxiv.org/abs/2201.11115},
eprinttype = {arXiv},
eprint = {2201.11115},
timestamp = {Tue, 01 Feb 2022 14:59:01 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|