File size: 14,776 Bytes
9e9cca9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import logging
import random
from collections import Counter, defaultdict
import numpy as np
import pandas as pd
from scipy.stats import chisquare, ranksums
from sklearn.metrics import accuracy_score, f1_score
from . import perturber_utils as pu
logger = logging.getLogger(__name__)
def downsample_and_shuffle(data, max_ncells, max_ncells_per_class, cell_state_dict):
data = data.shuffle(seed=42)
num_cells = len(data)
# if max number of cells is defined, then subsample to this max number
if max_ncells is not None:
if num_cells > max_ncells:
data = data.select([i for i in range(max_ncells)])
if max_ncells_per_class is not None:
class_labels = data[cell_state_dict["state_key"]]
random.seed(42)
subsample_indices = subsample_by_class(class_labels, max_ncells_per_class)
data = data.select(subsample_indices)
return data
# subsample labels to maximum number N per class and return indices
def subsample_by_class(labels, N):
label_indices = defaultdict(list)
# Gather indices for each label
for idx, label in enumerate(labels):
label_indices[label].append(idx)
selected_indices = []
# Select up to N indices for each label
for label, indices in label_indices.items():
if len(indices) > N:
selected_indices.extend(random.sample(indices, N))
else:
selected_indices.extend(indices)
return selected_indices
def rename_cols(data, state_key):
data = data.rename_column(state_key, "label")
return data
def validate_and_clean_cols(train_data, eval_data, classifier):
# validate that data has expected label column and remove others
if classifier == "cell":
label_col = "label"
elif classifier == "gene":
label_col = "labels"
cols_to_keep = [label_col] + ["input_ids", "length"]
if label_col not in train_data.column_names:
logger.error(f"train_data must contain column {label_col} with class labels.")
raise
else:
train_data = remove_cols(train_data, cols_to_keep)
if eval_data is not None:
if label_col not in eval_data.column_names:
logger.error(
f"eval_data must contain column {label_col} with class labels."
)
raise
else:
eval_data = remove_cols(eval_data, cols_to_keep)
return train_data, eval_data
def remove_cols(data, cols_to_keep):
other_cols = list(data.features.keys())
other_cols = [ele for ele in other_cols if ele not in cols_to_keep]
data = data.remove_columns(other_cols)
return data
def remove_rare(data, rare_threshold, label, nproc):
if rare_threshold > 0:
total_cells = len(data)
label_counter = Counter(data[label])
nonrare_label_dict = {
label: [k for k, v in label_counter if (v / total_cells) > rare_threshold]
}
data = pu.filter_by_dict(data, nonrare_label_dict, nproc)
return data
def label_classes(classifier, data, gene_class_dict, nproc):
if classifier == "cell":
label_set = set(data["label"])
elif classifier == "gene":
# remove cells without any of the target genes
def if_contains_label(example):
a = pu.flatten_list(gene_class_dict.values())
b = example["input_ids"]
return not set(a).isdisjoint(b)
data = data.filter(if_contains_label, num_proc=nproc)
label_set = gene_class_dict.keys()
if len(data) == 0:
logger.error(
"No cells remain after filtering for target genes. Check target gene list."
)
raise
class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))]))
id_class_dict = {v: k for k, v in class_id_dict.items()}
def classes_to_ids(example):
if classifier == "cell":
example["label"] = class_id_dict[example["label"]]
elif classifier == "gene":
example["labels"] = label_gene_classes(
example, class_id_dict, gene_class_dict
)
return example
data = data.map(classes_to_ids, num_proc=nproc)
return data, id_class_dict
def label_gene_classes(example, class_id_dict, gene_class_dict):
return [
class_id_dict.get(gene_class_dict.get(token_id, -100), -100)
for token_id in example["input_ids"]
]
def prep_gene_classifier_split(
data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc
):
# generate cross-validation splits
targets = np.array(targets)
labels = np.array(labels)
targets_train, targets_eval = targets[train_index], targets[eval_index]
labels_train, labels_eval = labels[train_index], labels[eval_index]
label_dict_train = dict(zip(targets_train, labels_train))
label_dict_eval = dict(zip(targets_eval, labels_eval))
# function to filter by whether contains train or eval labels
def if_contains_train_label(example):
a = targets_train
b = example["input_ids"]
return not set(a).isdisjoint(b)
def if_contains_eval_label(example):
a = targets_eval
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
logger.info(f"Filtering training data for genes in split {iteration_num}")
train_data = data.filter(if_contains_train_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
)
logger.info(f"Filtering evalation data for genes in split {iteration_num}")
eval_data = data.filter(if_contains_eval_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(eval_data)/len(data))*100)}%; {len(eval_data)} remain\n"
)
# subsample to max_ncells
train_data = downsample_and_shuffle(train_data, max_ncells, None, None)
eval_data = downsample_and_shuffle(eval_data, max_ncells, None, None)
# relabel genes for this split
def train_classes_to_ids(example):
example["labels"] = [
label_dict_train.get(token_id, -100) for token_id in example["input_ids"]
]
return example
def eval_classes_to_ids(example):
example["labels"] = [
label_dict_eval.get(token_id, -100) for token_id in example["input_ids"]
]
return example
train_data = train_data.map(train_classes_to_ids, num_proc=num_proc)
eval_data = eval_data.map(eval_classes_to_ids, num_proc=num_proc)
return train_data, eval_data
def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc):
targets = np.array(targets)
labels = np.array(labels)
label_dict_train = dict(zip(targets, labels))
# function to filter by whether contains train labels
def if_contains_train_label(example):
a = targets
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
logger.info("Filtering training data for genes to classify.")
train_data = data.filter(if_contains_train_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
)
# subsample to max_ncells
train_data = downsample_and_shuffle(train_data, max_ncells, None, None)
# relabel genes for this split
def train_classes_to_ids(example):
example["labels"] = [
label_dict_train.get(token_id, -100) for token_id in example["input_ids"]
]
return example
train_data = train_data.map(train_classes_to_ids, num_proc=num_proc)
return train_data
def balance_attr_splits(
data,
attr_to_split,
attr_to_balance,
eval_size,
max_trials,
pval_threshold,
state_key,
nproc,
):
metadata_df = pd.DataFrame({"split_attr_ids": data[attr_to_split]})
for attr in attr_to_balance:
if attr == state_key:
metadata_df[attr] = data["label"]
else:
metadata_df[attr] = data[attr]
metadata_df = metadata_df.drop_duplicates()
split_attr_ids = list(metadata_df["split_attr_ids"])
assert len(split_attr_ids) == len(set(split_attr_ids))
eval_num = round(len(split_attr_ids) * eval_size)
colnames = (
["trial_num", "train_ids", "eval_ids"]
+ pu.flatten_list(
[
[
f"{attr}_train_mean_or_counts",
f"{attr}_eval_mean_or_counts",
f"{attr}_pval",
]
for attr in attr_to_balance
]
)
+ ["mean_pval"]
)
balance_df = pd.DataFrame(columns=colnames)
data_dict = dict()
trial_num = 1
for i in range(max_trials):
if not all(
count > 1 for count in list(Counter(metadata_df[state_key]).values())
):
logger.error(
f"Cannot balance by {attr_to_split} while retaining at least 1 occurrence of each {state_key} class in both data splits. "
)
raise
eval_base = []
for state in set(metadata_df[state_key]):
eval_base += list(
metadata_df.loc[
metadata_df[state_key][metadata_df[state_key].eq(state)]
.sample(1, random_state=i)
.index
]["split_attr_ids"]
)
non_eval_base = [idx for idx in split_attr_ids if idx not in eval_base]
random.seed(i)
eval_ids = random.sample(non_eval_base, eval_num - len(eval_base)) + eval_base
train_ids = [idx for idx in split_attr_ids if idx not in eval_ids]
df_vals = [trial_num, train_ids, eval_ids]
pvals = []
for attr in attr_to_balance:
train_attr = list(
metadata_df[metadata_df["split_attr_ids"].isin(train_ids)][attr]
)
eval_attr = list(
metadata_df[metadata_df["split_attr_ids"].isin(eval_ids)][attr]
)
if attr == state_key:
# ensure IDs are interpreted as categorical
train_attr = [str(item) for item in train_attr]
eval_attr = [str(item) for item in eval_attr]
if all(isinstance(item, (int, float)) for item in train_attr + eval_attr):
train_attr_mean = np.nanmean(train_attr)
eval_attr_mean = np.nanmean(eval_attr)
pval = ranksums(train_attr, eval_attr, nan_policy="omit").pvalue
df_vals += [train_attr_mean, eval_attr_mean, pval]
elif all(isinstance(item, (str)) for item in train_attr + eval_attr):
obs_counts = Counter(train_attr)
exp_counts = Counter(eval_attr)
all_categ = set(obs_counts.keys()).union(set(exp_counts.keys()))
obs = [obs_counts[cat] for cat in all_categ]
exp = [
exp_counts[cat] * sum(obs) / sum(exp_counts.values())
for cat in all_categ
]
chisquare(f_obs=obs, f_exp=exp).pvalue
train_attr_counts = str(obs_counts).strip("Counter(").strip(")")
eval_attr_counts = str(exp_counts).strip("Counter(").strip(")")
df_vals += [train_attr_counts, eval_attr_counts, pval]
else:
logger.error(
f"Inconsistent data types in attribute {attr}. "
"Cannot infer if continuous or categorical. "
"Must be all numeric (continuous) or all strings (categorical) to balance."
)
raise
pvals += [pval]
df_vals += [np.nanmean(pvals)]
balance_df_i = pd.DataFrame(df_vals, index=colnames).T
balance_df = pd.concat([balance_df, balance_df_i], ignore_index=True)
valid_pvals = [
pval_i
for pval_i in pvals
if isinstance(pval_i, (int, float)) and not np.isnan(pval_i)
]
if all(i >= pval_threshold for i in valid_pvals):
data_dict["train"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
)
data_dict["test"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
)
return data_dict, balance_df
trial_num = trial_num + 1
balance_max_df = balance_df.iloc[balance_df["mean_pval"].idxmax(), :]
data_dict["train"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
)
data_dict["test"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
)
logger.warning(
f"No splits found without significant difference in attr_to_balance among {max_trials} trials. "
f"Selecting optimal split (trial #{balance_max_df['trial_num']}) from completed trials."
)
return data_dict, balance_df
def get_num_classes(id_class_dict):
return len(set(id_class_dict.values()))
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# calculate accuracy and macro f1 using sklearn's function
acc = accuracy_score(labels, preds)
macro_f1 = f1_score(labels, preds, average="macro")
return {"accuracy": acc, "macro_f1": macro_f1}
def get_default_train_args(model, classifier, data, output_dir):
num_layers = pu.quant_layers(model)
freeze_layers = 0
batch_size = 12
if classifier == "cell":
epochs = 10
evaluation_strategy = "epoch"
load_best_model_at_end = True
else:
epochs = 1
evaluation_strategy = "no"
load_best_model_at_end = False
if num_layers == 6:
default_training_args = {
"learning_rate": 5e-5,
"lr_scheduler_type": "linear",
"warmup_steps": 500,
"per_device_train_batch_size": batch_size,
"per_device_eval_batch_size": batch_size,
}
training_args = {
"num_train_epochs": epochs,
"do_train": True,
"do_eval": True,
"evaluation_strategy": evaluation_strategy,
"logging_steps": np.floor(len(data) / batch_size / 8), # 8 evals per epoch
"save_strategy": "epoch",
"group_by_length": False,
"length_column_name": "length",
"disable_tqdm": False,
"weight_decay": 0.001,
"load_best_model_at_end": load_best_model_at_end,
}
training_args.update(default_training_args)
return training_args, freeze_layers
|