facebook wmt21 model facebook/wmt21-dense-24-wide-en-x as safetensors for testing.
so far, looks quite good, cf. comet scores:
+-----------------------------------------+-----------------+
| File | Overall Score |
+=========================================+=================+
| Capybara_de_wmt21_scored.jsonl | 0.848375 |
+-----------------------------------------+-----------------+
| Capybara_de_GPT4_scored.jsonl | 0.846241 |
+-----------------------------------------+-----------------+
| Capybara_de_Claude-3-Opus_scored.jsonl | 0.84568 |
+-----------------------------------------+-----------------+
| Capybara_de_deepl_scored.jsonl | 0.843937 |
+-----------------------------------------+-----------------+
| Capybara_de_GPT3.5_scored.jsonl | 0.843922 |
+-----------------------------------------+-----------------+
| Capybara_de_occiglot_scored.jsonl | 0.83135 |
+-----------------------------------------+-----------------+
| Capybara_de_discolm_scored.jsonl | 0.830676 |
+-----------------------------------------+-----------------+
| Capybara_de_nbbl_scored.jsonl | 0.829132 |
+-----------------------------------------+-----------------+
| Capybara_de_wmt19_scored.jsonl | 0.824847 |
+-----------------------------------------+-----------------+
| Capybara_de_t5madlad_scored.jsonl | 0.818146 |
+-----------------------------------------+-----------------+
| Capybara_de_mixtral_scored.jsonl | 0.807397 |
+-----------------------------------------+-----------------+
| Capybara_de_TowerInstruct2_scored.jsonl | 0.788971 |
+-----------------------------------------+-----------------+
also, cf. comparison on a few snippets: https://huggingface.co/spaces/cstr/compare_translations
regarding quantization: on linux, or windows wsl (with accelerate, triton), you can use quantized versions q8 q4
on apple mac mps, you can use CTranslate2 like this: first convert the model:
ct2-transformers-converter --model cstr/wmt21-dense-24-wide-en-x-st --quantization int8_float32 --output_dir wmt21ct2_int8
then run e.g. in python:
import ctranslate2
import transformers
translator = ctranslate2.Translator("wmt21ct2_int8")
tokenizer = transformers.AutoTokenizer.from_pretrained("facebook/wmt21-dense-24-wide-en-x")
tokenizer.src_lang = "en"
source = tokenizer.convert_ids_to_tokens(tokenizer.encode("Choose the correct verb form to complete the sentence: The birds ____________ (to fly) to the south for the winter."))
target_prefix = [tokenizer.lang_code_to_token["de"]]
results = translator.translate_batch([source], target_prefix=[target_prefix])
target = results[0].hypotheses[0][1:]
print(tokenizer.decode(tokenizer.convert_tokens_to_ids(target)))
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.