File size: 8,205 Bytes
d803e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- johannhartmann/Brezn3
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- johannhartmann/Brezn3
- ResplendentAI/Flora_DPO_7B
language:
- de
- en
---

# Spaetzle-v8-7b

This model is supposed to show adequate performance in German and English on a number of tasks, while mostly behaving well, that is, without rambling on, intermixing tokens from different templates in training and adapting, etc.

It is mostly a quick test, and considerably weaker in German grammar and orthography than DiscoLM e.g., but for use cases where this is not too important, but e.g. instruction following, reasoning, etc, it might actually be a little bit preferable.

It is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B)
* [johannhartmann/Brezn3](https://huggingface.co/johannhartmann/Brezn3)
* [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B)
* on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser)

All credits are due to the creators of those original models and the training datasets involved.

For a suitable quantized version, try [cstr/Spaetzle-v8-7b-GGUF](https://huggingface.co/cstr/Spaetzle-v8-7b-GGUF)


## Evaluation
[Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cstr__Spaetzle-v8-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.27|
|AI2 Reasoning Challenge (25-Shot)|68.69|
|HellaSwag (10-Shot)              |86.68|
|MMLU (5-Shot)                    |64.60|
|TruthfulQA (0-shot)              |64.05|
|Winogrande (5-shot)              |81.45|
|GSM8k (5-shot)                   |68.16|

EQ-Bench (v2_de): 61.04 / english (v2): 78.3

|                           Model                            |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v8-7b](https://huggingface.co/cstr/Spaetzle-v8-7b)|  45.31|  75.69|     63.94|   45.57|  57.63|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |25.59|±  |  2.74|
|                              |       |acc_norm|24.80|±  |  2.72|
|agieval_logiqa_en             |      0|acc     |39.63|±  |  1.92|
|                              |       |acc_norm|39.78|±  |  1.92|
|agieval_lsat_ar               |      0|acc     |23.48|±  |  2.80|
|                              |       |acc_norm|24.35|±  |  2.84|
|agieval_lsat_lr               |      0|acc     |50.98|±  |  2.22|
|                              |       |acc_norm|51.96|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |62.08|±  |  2.96|
|                              |       |acc_norm|62.83|±  |  2.95|
|agieval_sat_en                |      0|acc     |78.64|±  |  2.86|
|                              |       |acc_norm|79.13|±  |  2.84|
|agieval_sat_en_without_passage|      0|acc     |44.66|±  |  3.47|
|                              |       |acc_norm|44.66|±  |  3.47|
|agieval_sat_math              |      0|acc     |37.27|±  |  3.27|
|                              |       |acc_norm|35.00|±  |  3.22|

Average: 45.31%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |63.14|±  |  1.41|
|             |       |acc_norm|64.51|±  |  1.40|
|arc_easy     |      0|acc     |85.98|±  |  0.71|
|             |       |acc_norm|82.49|±  |  0.78|
|boolq        |      1|acc     |88.10|±  |  0.57|
|hellaswag    |      0|acc     |66.31|±  |  0.47|
|             |       |acc_norm|85.17|±  |  0.35|
|openbookqa   |      0|acc     |38.00|±  |  2.17|
|             |       |acc_norm|47.20|±  |  2.23|
|piqa         |      0|acc     |83.35|±  |  0.87|
|             |       |acc_norm|84.17|±  |  0.85|
|winogrande   |      0|acc     |78.22|±  |  1.16|

Average: 75.69%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |47.74|±  |  1.75|
|             |       |mc2   |63.94|±  |  1.53|

Average: 63.94%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|56.84|±  |  3.60|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.12|±  |  2.47|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|41.47|±  |  3.07|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|22.01|±  |  2.19|
|                                                |       |exact_str_match      | 0.00|±  |  0.00|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|31.40|±  |  2.08|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|23.14|±  |  1.60|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|56.00|±  |  2.87|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|45.00|±  |  2.23|
|bigbench_navigate                               |      0|multiple_choice_grade|50.70|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|70.05|±  |  1.02|
|bigbench_ruin_names                             |      0|multiple_choice_grade|45.54|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|26.05|±  |  1.39|
|bigbench_snarks                                 |      0|multiple_choice_grade|71.82|±  |  3.35|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|72.92|±  |  1.42|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|44.20|±  |  1.57|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|22.80|±  |  1.19|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.23|±  |  0.92|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|56.00|±  |  2.87|

Average: 45.57%

Average score: 57.63%

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v8-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```


## 🧩 Configuration

The model uses ChatML and should work well with this (as it is merged from models which (mostly) saw ChatML templates in training). 

```yaml
models:
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    # no parameters necessary for base model
  - model: flemmingmiguel/NeuDist-Ro-7B
    parameters:
      density: 0.60
      weight: 0.30
  - model: johannhartmann/Brezn3
    parameters:
      density: 0.65
      weight: 0.40
  - model: ResplendentAI/Flora_DPO_7B
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```