BERT-base uncased model fine-tuned on SQuAD v1
This model was fine-tuned from the HuggingFace BERT base uncased checkpoint on SQuAD1.1. This model is case-insensitive: it does not make a difference between english and English.
Details
Dataset | Split | # samples |
---|---|---|
SQuAD1.1 | train | 90.6K |
SQuAD1.1 | eval | 11.1k |
Fine-tuning
Python:
3.7.5
Machine specs:
CPU: Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
Memory: 32 GiB
GPUs: 2 GeForce GTX 1070, each with 8GiB memory
GPU driver: 418.87.01, CUDA: 10.1
script:
```shell
after install https://github.com/huggingface/transformers
cd examples/question-answering mkdir -p data
wget -O data/train-v1.1.json https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json
wget -O data/dev-v1.1.json https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
python run_squad.py
--model_type bert
--model_name_or_path bert-base-uncased
--do_train
--do_eval
--do_lower_case
--train_file train-v1.1.json
--predict_file dev-v1.1.json
--per_gpu_train_batch_size 12
--per_gpu_eval_batch_size=16
--learning_rate 3e-5
--num_train_epochs 2.0
--max_seq_length 320
--doc_stride 128
--data_dir data
--output_dir data/bert-base-uncased-squad-v1 2>&1 | tee train-energy-bert-base-squad-v1.log
It took about 2 hours to finish.
### Results
**Model size**: `418M`
| Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))|
| ------ | --------- | --------- |
| **EM** | **80.9** | **80.8** |
| **F1** | **88.2** | **88.5** |
Note that the above results didn't involve any hyperparameter search.
## Example Usage
```python
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="csarron/bert-base-uncased-squad-v1",
tokenizer="csarron/bert-base-uncased-squad-v1"
)
predictions = qa_pipeline({
'context': "The game was played on February 7, 2016 at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.",
'question': "What day was the game played on?"
})
print(predictions)
# output:
# {'score': 0.8730505704879761, 'start': 23, 'end': 39, 'answer': 'February 7, 2016'}
Created by Qingqing Cao | GitHub | Twitter
Made with ❤️ in New York.
- Downloads last month
- 46,850
Dataset used to train csarron/bert-base-uncased-squad-v1
Space using csarron/bert-base-uncased-squad-v1 1
Evaluation results
- Exact Match on squadvalidation set self-reported80.910
- F1 on squadvalidation set self-reported88.230