File size: 7,934 Bytes
cad4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5b87c
 
cad4540
 
 
 
 
 
 
 
 
 
1e86311
cad4540
1e86311
cad4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e86311
 
cad4540
 
 
 
 
 
 
 
 
 
 
 
 
 
1e86311
cad4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5b87c
cad4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Chatbot based on the notebook [How to generate text: using different decoding
methods for language generation with
Transformers](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)
and the blog post [Create conversational agents using BLOOM:
Part-1](https://medium.com/@fractal.ai/create-conversational-agents-using-bloom-part-1-63a66e6321c0).

This code needs testing, as it is not fitted for a production model.

It's a very basic chatbot that uses Causal Language Models from Transformers
given an PROMPT.

An example of a basic PROMPT is given in the file `prompt.txt` for a Spanish
prompt.
"""

import argparse
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel,\
    PreTrainedTokenizerBase
from typing import Optional, Union


class ChatBot:
    """
    Main class wrapper around the transformers models in order to build a basic
    chatbot application.

    Parameters
    ----------
    base_model : str | PreTrainedModel
        A name (path in hugging face hub) for a model, or the model itself.
    tokenizer : PreTrainedTokenizerBase | None
        Needed in case the base_model is a given model, otherwise it will load
        the same model given by the base_model path.
    initial_prompt : str
        A prompt for the model. Should follow the example given in
        `BASE_PROMPT`
    keep_context : bool
        Whether to accumulate the context as the chatbot is used.
    creative : bool
        Whether to generate text through sampling (with some very basic config)
        or to go with greedy algorithm. Check the notebook "How to generate
        text" (link above) for more information.
    max_tokens : int
        Max number of tokens to generate in the chat.
    human_identifier : str
        The string that will identify the human speaker in the prompt (e.g.
        HUMAN).
    bot_identifier : str
        The string that will identify the bot speaker in the prompt (e.g.
        EXPERT).
    """

    def __init__(self,
                 base_model: Union[str, PreTrainedModel],
                 tokenizer: Optional[PreTrainedTokenizerBase] = None,
                 initial_prompt: Optional[str] = None,
                 keep_context: bool = False,
                 creative: bool = False,
                 max_tokens: int = 50,
                 human_identifier: str = 'HUMAN',
                 bot_identifier: str = 'EXPERT'):
        if isinstance(base_model, str):
            self.model = AutoModelForCausalLM.from_pretrained(
                base_model,
                low_cpu_mem_usage=True,
                torch_dtype='auto'
            )
            self.tokenizer = AutoTokenizer.from_pretrained(base_model)
        else:
            assert isinstance(tokenizer, PreTrainedTokenizerBase),\
                "If the base model is given, the tokenizer should be given as well"
            self.model = base_model
            self.tokenizer = tokenizer

        if initial_prompt is None:
            with open('./prompt.txt', 'r') as fh:
                self.initial_prompt = fh.read()
        else:
            self.initial_prompt = initial_prompt

        self.keep_context = keep_context
        self.context = ''
        self.creative = creative
        self.max_tokens = max_tokens
        self.human_identifier = human_identifier
        self.bot_identifier = bot_identifier

    def chat(self, input_text: str) -> str:
        """
        Generates a response from the prompt (and optionally the context) where
        it adds the `input_text` as if it was part of the HUMAN dialog
        (identified by `self.human_identifier`), and prompts the bot
        (identified by `self.bot_identifier`) for a response. As the bot might
        continue the conversation beyond the scope, it trims the output so it
        only shows the first dialog given by the bot, following the idea
        presented in the Medium blog post for creating conversational agents
        (link above).

        Parameters
        ----------
        input_text : str
            The question asked/phrase prompted by a human.

        Returns
        -------
        str
            The output given by the bot, trimmed for better control.
        """
        # Setup the prompt given the initial prompt and add the words that
        # start the dialog between the human and the bot. Give space for the
        # model to continue from the prompt
        prompt = self.initial_prompt + self.context
        prompt += f'{self.human_identifier}: {input_text}\n'
        prompt += f'{self.bot_identifier}: '  # check the space after the colon

        input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
        if self.creative:
            # In case you want the bot to be creative, we sample using `top_k`
            # and `top_p`
            output = self.model.generate(
                input_ids,
                do_sample=True,
                max_length=input_ids.shape[1] + self.max_tokens,
                top_k=50,
                top_p=0.95
            )[0]
        else:
            # Otherwise we return the most probable token
            output = self.model.generate(
                input_ids,
                max_length=input_ids.shape[1] + self.max_tokens
            )[0]

        # Decode the output, removing special tokens for the model (like
        # `[CLS]` and similar)
        decoded_output = self.tokenizer.decode(output, skip_special_tokens=True)

        # Trim the output, first by removing the original prompt
        trimmed_output = decoded_output[len(prompt):]

        # Then we find the stop token, in this case the human identifier, and
        # we get up to that point
        trimmed_output = trimmed_output[:trimmed_output.find(f'{self.human_identifier}:')]

        if self.keep_context:
            # If we want to keep the context of the conversation we add the
            # trimmed output so far
            self.context += prompt + trimmed_output

        return trimmed_output.strip()  # we only return the trimmed output


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model-name', '-m',
                        default='bigscience/bloom-560m',
                        help="Name of the base model to use for the chatbot")
    parser.add_argument('--prompt', '-p',
                        default='./prompt.txt',
                        help="Path to the file with the prompt to use")
    parser.add_argument('--keep-context', '-k',
                        action='store_true',
                        help="Keep context of the conversation.")
    parser.add_argument('--creative', '-c',
                        action='store_true',
                        help="Make the bot creative when answering.")
    parser.add_argument('--random-seed', '-r',
                        default=42,
                        help="Seed number for the creative bot.",
                        type=int)
    parser.add_argument('--human-identifier', '-i',
                        default='HUMANO',
                        help="Name of the human identifier.")
    parser.add_argument('--bot-identifier', '-b',
                        default='EXPERTO',
                        help="Name of the bot identifier.")

    args = parser.parse_args()

    torch.manual_seed(args.random_seed)

    with open(args.prompt, 'r') as fh:
        initial_prompt = fh.read()

    chatbot = ChatBot(
        base_model=args.model_name,
        initial_prompt=initial_prompt,
        keep_context=args.keep_context,
        creative=args.creative,
        human_identifier=args.human_identifier,
        bot_identifier=args.bot_identifier
    )

    print("Write `exit` or `quit` to quit")
    while True:
        input_text = input('> ')
        if input_text == 'exit' or input_text == 'quit':
            break
        print(chatbot.chat(input_text))