whisper_med_alex.en
This model is a fine-tuned version of crossdelenna/whisper_med_alex.en on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3767
- Wer: 23.2232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 25609
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2094 | 1.1583 | 300 | 0.1578 | 10.2392 |
0.15 | 2.3166 | 600 | 0.1294 | 7.8546 |
0.1244 | 3.4749 | 900 | 0.1208 | 7.2765 |
0.1077 | 4.6332 | 1200 | 0.1073 | 6.7227 |
0.0931 | 5.7915 | 1500 | 0.0945 | 6.6980 |
0.0804 | 6.9498 | 1800 | 0.0908 | 6.4261 |
0.075 | 8.1081 | 2100 | 0.0797 | 3.9691 |
0.0661 | 9.2664 | 2400 | 0.0669 | 3.1484 |
0.0597 | 10.4247 | 2700 | 0.0743 | 4.4795 |
0.0551 | 11.5830 | 3000 | 0.0669 | 3.6286 |
0.0518 | 12.7413 | 3300 | 0.0565 | 4.1814 |
0.0475 | 13.8996 | 3600 | 0.0552 | 2.6162 |
0.046 | 15.0579 | 3900 | 0.0508 | 3.1180 |
0.0412 | 16.2162 | 4200 | 0.0512 | 2.7882 |
0.0391 | 17.3745 | 4500 | 0.0525 | 2.1304 |
0.038 | 18.5328 | 4800 | 0.0462 | 1.7037 |
0.0359 | 19.6911 | 5100 | 0.0409 | 1.5496 |
0.0328 | 20.8494 | 5400 | 0.0422 | 1.7406 |
0.0306 | 89.0618 | 5700 | 0.0334 | 1.2605 |
0.2114 | 115.3791 | 6000 | 0.0279 | 0.9614 |
0.1869 | 121.1517 | 6300 | 0.0320 | 0.8169 |
0.14 | 51.1622 | 6600 | 0.1414 | 6.1036 |
0.1151 | 53.4865 | 6900 | 0.1405 | 6.0445 |
0.1194 | 55.8031 | 7200 | 0.1394 | 6.1036 |
0.0277 | 28.9575 | 7500 | 0.0355 | 1.0875 |
0.0253 | 30.1158 | 7800 | 0.0335 | 1.0133 |
0.0244 | 31.2741 | 8100 | 0.0325 | 0.8898 |
0.9305 | 175.0 | 8400 | 0.8205 | 30.4552 |
0.7302 | 181.25 | 8700 | 0.6930 | 27.5458 |
0.624 | 187.5 | 9000 | 0.5692 | 22.5246 |
0.516 | 193.75 | 9300 | 0.4793 | 20.1783 |
0.4555 | 200.0 | 9600 | 0.4468 | 18.3013 |
0.4128 | 206.25 | 9900 | 0.3961 | 16.0488 |
0.3649 | 212.5 | 10200 | 0.3497 | 14.6879 |
0.323 | 218.75 | 10500 | 0.3275 | 13.5617 |
0.3023 | 225.0 | 10800 | 0.3095 | 12.8109 |
0.2778 | 231.25 | 11100 | 0.2806 | 12.1539 |
0.2519 | 237.5 | 11400 | 0.2660 | 11.6847 |
0.2381 | 243.75 | 11700 | 0.2523 | 11.1685 |
0.216 | 250.0 | 12000 | 0.2321 | 10.3707 |
0.1987 | 256.25 | 12300 | 0.2220 | 9.7607 |
0.1827 | 262.5 | 12600 | 0.2024 | 9.1506 |
0.1827 | 266.6667 | 12800 | 0.1893 | 8.3529 |
0.1608 | 270.8333 | 13000 | 0.1803 | 7.6959 |
0.1443 | 275.0 | 13200 | 0.1742 | 7.5551 |
0.1443 | 279.1667 | 13400 | 0.1710 | 7.5082 |
0.1357 | 283.3333 | 13600 | 0.1703 | 7.5082 |
0.1279 | 287.5 | 13800 | 0.1583 | 6.9451 |
0.1279 | 291.6667 | 14000 | 0.1499 | 6.5228 |
0.111 | 295.8333 | 14200 | 0.1434 | 6.0535 |
0.0977 | 300.0 | 14400 | 0.1393 | 5.9596 |
0.0977 | 304.1667 | 14600 | 0.1373 | 5.8189 |
0.0923 | 308.3333 | 14800 | 0.1370 | 5.7719 |
0.0873 | 312.5 | 15000 | 0.1311 | 5.0211 |
0.0757 | 318.75 | 15300 | 0.1235 | 4.8803 |
0.0678 | 325.0 | 15600 | 0.1192 | 4.7865 |
0.0631 | 331.25 | 15900 | 0.1175 | 4.7865 |
0.0588 | 337.5 | 16200 | 0.1125 | 4.6926 |
0.0517 | 343.75 | 16500 | 0.1075 | 4.5049 |
0.0461 | 350.0 | 16800 | 0.1044 | 4.3641 |
0.0431 | 356.25 | 17100 | 0.1032 | 4.3641 |
0.0402 | 362.5 | 17400 | 0.0997 | 4.3641 |
0.0351 | 368.75 | 17700 | 0.0969 | 4.2703 |
0.0311 | 375.0 | 18000 | 0.0951 | 3.0971 |
0.029 | 381.25 | 18300 | 0.0945 | 3.0502 |
0.0275 | 387.5 | 18600 | 0.0925 | 3.3318 |
0.024 | 393.75 | 18900 | 0.0908 | 2.8156 |
0.0213 | 400.0 | 19200 | 0.0899 | 2.6279 |
0.0202 | 406.25 | 19500 | 0.0896 | 2.6279 |
0.0189 | 412.5 | 19800 | 0.0888 | 2.5340 |
0.0169 | 418.75 | 20100 | 0.0877 | 2.5340 |
0.0153 | 425.0 | 20400 | 0.0885 | 2.5340 |
0.0146 | 431.25 | 20700 | 0.0886 | 2.5340 |
0.0139 | 437.5 | 21000 | 0.0892 | 2.5340 |
0.0123 | 443.75 | 21300 | 0.0892 | 2.5340 |
0.0112 | 450.0 | 21600 | 0.0897 | 2.4871 |
0.0107 | 456.25 | 21900 | 0.0896 | 2.5809 |
0.8558 | 569.2308 | 22200 | 0.8489 | 38.8470 |
0.6744 | 576.9231 | 22500 | 0.6970 | 26.5260 |
0.5946 | 584.6154 | 22800 | 0.6345 | 24.7551 |
0.5608 | 592.3077 | 23100 | 0.6144 | 24.3029 |
0.5341 | 600.0 | 23400 | 0.5610 | 23.5870 |
0.4896 | 607.6923 | 23700 | 0.5067 | 26.2622 |
0.4598 | 615.3846 | 24000 | 0.4778 | 25.5087 |
0.444 | 623.0769 | 24300 | 0.4675 | 25.0565 |
0.4335 | 647.3684 | 24600 | 0.4388 | 22.9599 |
0.4055 | 655.2632 | 24900 | 0.4039 | 24.6271 |
0.3846 | 663.1579 | 25200 | 0.3839 | 23.3694 |
0.3725 | 671.0526 | 25500 | 0.3767 | 23.2232 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 214
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for crossdelenna/whisper_med_alex.en
Unable to build the model tree, the base model loops to the model itself. Learn more.