whisper_med_alex.en

This model is a fine-tuned version of crossdelenna/whisper_med_alex.en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3767
  • Wer: 23.2232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25609
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2094 1.1583 300 0.1578 10.2392
0.15 2.3166 600 0.1294 7.8546
0.1244 3.4749 900 0.1208 7.2765
0.1077 4.6332 1200 0.1073 6.7227
0.0931 5.7915 1500 0.0945 6.6980
0.0804 6.9498 1800 0.0908 6.4261
0.075 8.1081 2100 0.0797 3.9691
0.0661 9.2664 2400 0.0669 3.1484
0.0597 10.4247 2700 0.0743 4.4795
0.0551 11.5830 3000 0.0669 3.6286
0.0518 12.7413 3300 0.0565 4.1814
0.0475 13.8996 3600 0.0552 2.6162
0.046 15.0579 3900 0.0508 3.1180
0.0412 16.2162 4200 0.0512 2.7882
0.0391 17.3745 4500 0.0525 2.1304
0.038 18.5328 4800 0.0462 1.7037
0.0359 19.6911 5100 0.0409 1.5496
0.0328 20.8494 5400 0.0422 1.7406
0.0306 89.0618 5700 0.0334 1.2605
0.2114 115.3791 6000 0.0279 0.9614
0.1869 121.1517 6300 0.0320 0.8169
0.14 51.1622 6600 0.1414 6.1036
0.1151 53.4865 6900 0.1405 6.0445
0.1194 55.8031 7200 0.1394 6.1036
0.0277 28.9575 7500 0.0355 1.0875
0.0253 30.1158 7800 0.0335 1.0133
0.0244 31.2741 8100 0.0325 0.8898
0.9305 175.0 8400 0.8205 30.4552
0.7302 181.25 8700 0.6930 27.5458
0.624 187.5 9000 0.5692 22.5246
0.516 193.75 9300 0.4793 20.1783
0.4555 200.0 9600 0.4468 18.3013
0.4128 206.25 9900 0.3961 16.0488
0.3649 212.5 10200 0.3497 14.6879
0.323 218.75 10500 0.3275 13.5617
0.3023 225.0 10800 0.3095 12.8109
0.2778 231.25 11100 0.2806 12.1539
0.2519 237.5 11400 0.2660 11.6847
0.2381 243.75 11700 0.2523 11.1685
0.216 250.0 12000 0.2321 10.3707
0.1987 256.25 12300 0.2220 9.7607
0.1827 262.5 12600 0.2024 9.1506
0.1827 266.6667 12800 0.1893 8.3529
0.1608 270.8333 13000 0.1803 7.6959
0.1443 275.0 13200 0.1742 7.5551
0.1443 279.1667 13400 0.1710 7.5082
0.1357 283.3333 13600 0.1703 7.5082
0.1279 287.5 13800 0.1583 6.9451
0.1279 291.6667 14000 0.1499 6.5228
0.111 295.8333 14200 0.1434 6.0535
0.0977 300.0 14400 0.1393 5.9596
0.0977 304.1667 14600 0.1373 5.8189
0.0923 308.3333 14800 0.1370 5.7719
0.0873 312.5 15000 0.1311 5.0211
0.0757 318.75 15300 0.1235 4.8803
0.0678 325.0 15600 0.1192 4.7865
0.0631 331.25 15900 0.1175 4.7865
0.0588 337.5 16200 0.1125 4.6926
0.0517 343.75 16500 0.1075 4.5049
0.0461 350.0 16800 0.1044 4.3641
0.0431 356.25 17100 0.1032 4.3641
0.0402 362.5 17400 0.0997 4.3641
0.0351 368.75 17700 0.0969 4.2703
0.0311 375.0 18000 0.0951 3.0971
0.029 381.25 18300 0.0945 3.0502
0.0275 387.5 18600 0.0925 3.3318
0.024 393.75 18900 0.0908 2.8156
0.0213 400.0 19200 0.0899 2.6279
0.0202 406.25 19500 0.0896 2.6279
0.0189 412.5 19800 0.0888 2.5340
0.0169 418.75 20100 0.0877 2.5340
0.0153 425.0 20400 0.0885 2.5340
0.0146 431.25 20700 0.0886 2.5340
0.0139 437.5 21000 0.0892 2.5340
0.0123 443.75 21300 0.0892 2.5340
0.0112 450.0 21600 0.0897 2.4871
0.0107 456.25 21900 0.0896 2.5809
0.8558 569.2308 22200 0.8489 38.8470
0.6744 576.9231 22500 0.6970 26.5260
0.5946 584.6154 22800 0.6345 24.7551
0.5608 592.3077 23100 0.6144 24.3029
0.5341 600.0 23400 0.5610 23.5870
0.4896 607.6923 23700 0.5067 26.2622
0.4598 615.3846 24000 0.4778 25.5087
0.444 623.0769 24300 0.4675 25.0565
0.4335 647.3684 24600 0.4388 22.9599
0.4055 655.2632 24900 0.4039 24.6271
0.3846 663.1579 25200 0.3839 23.3694
0.3725 671.0526 25500 0.3767 23.2232

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
214
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for crossdelenna/whisper_med_alex.en

Unable to build the model tree, the base model loops to the model itself. Learn more.