|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
language: |
|
- sk |
|
inference: false |
|
model-index: |
|
- name: fernet-sk-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann sk |
|
type: wikiann |
|
args: sk |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9359821760118826 |
|
- name: Recall |
|
type: recall |
|
value: 0.9472378804960541 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9415763914830033 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9789063466534702 |
|
--- |
|
|
|
# Named Entity Recognition based on FERNET-CC_sk |
|
|
|
This model is a fine-tuned version of [fav-kky/FERNET-CC_sk](https://huggingface.co/fav-kky/FERNET-CC_sk) on the Slovak wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1763 |
|
- Precision: 0.9360 |
|
- Recall: 0.9472 |
|
- F1: 0.9416 |
|
- Accuracy: 0.9789 |
|
|
|
## Intended uses & limitation |
|
Supported classes: LOCATION, PERSON, ORGANIZATION |
|
|
|
``` |
|
from transformers import pipeline |
|
|
|
ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner') |
|
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké." |
|
classifications = ner_pipeline(input_sentence) |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1259 | 1.0 | 834 | 0.1095 | 0.8963 | 0.9182 | 0.9071 | 0.9697 | |
|
| 0.071 | 2.0 | 1668 | 0.0974 | 0.9270 | 0.9357 | 0.9313 | 0.9762 | |
|
| 0.0323 | 3.0 | 2502 | 0.1259 | 0.9257 | 0.9330 | 0.9293 | 0.9745 | |
|
| 0.0175 | 4.0 | 3336 | 0.1347 | 0.9241 | 0.9360 | 0.9300 | 0.9756 | |
|
| 0.0156 | 5.0 | 4170 | 0.1407 | 0.9337 | 0.9404 | 0.9370 | 0.9780 | |
|
| 0.0062 | 6.0 | 5004 | 0.1522 | 0.9267 | 0.9410 | 0.9338 | 0.9774 | |
|
| 0.0055 | 7.0 | 5838 | 0.1559 | 0.9322 | 0.9429 | 0.9375 | 0.9780 | |
|
| 0.0024 | 8.0 | 6672 | 0.1733 | 0.9321 | 0.9438 | 0.9379 | 0.9779 | |
|
| 0.0009 | 9.0 | 7506 | 0.1765 | 0.9347 | 0.9468 | 0.9407 | 0.9784 | |
|
| 0.0002 | 10.0 | 8340 | 0.1763 | 0.9360 | 0.9472 | 0.9416 | 0.9789 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.14.0.dev0 |
|
- Pytorch 1.10.0 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.10.3 |
|
|