FERNET-CC_sk-ner / README.md
crabz's picture
fernet sk ner
713e1e0
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
language:
  - sk
inference: false
model-index:
  - name: fernet-sk-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann sk
          type: wikiann
          args: sk
        metrics:
          - name: Precision
            type: precision
            value: 0.9359821760118826
          - name: Recall
            type: recall
            value: 0.9472378804960541
          - name: F1
            type: f1
            value: 0.9415763914830033
          - name: Accuracy
            type: accuracy
            value: 0.9789063466534702

Named Entity Recognition based on FERNET-CC_sk

This model is a fine-tuned version of fav-kky/FERNET-CC_sk on the Slovak wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1763
  • Precision: 0.9360
  • Recall: 0.9472
  • F1: 0.9416
  • Accuracy: 0.9789

Intended uses & limitation

Supported classes: LOCATION, PERSON, ORGANIZATION

from transformers import pipeline

ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1259 1.0 834 0.1095 0.8963 0.9182 0.9071 0.9697
0.071 2.0 1668 0.0974 0.9270 0.9357 0.9313 0.9762
0.0323 3.0 2502 0.1259 0.9257 0.9330 0.9293 0.9745
0.0175 4.0 3336 0.1347 0.9241 0.9360 0.9300 0.9756
0.0156 5.0 4170 0.1407 0.9337 0.9404 0.9370 0.9780
0.0062 6.0 5004 0.1522 0.9267 0.9410 0.9338 0.9774
0.0055 7.0 5838 0.1559 0.9322 0.9429 0.9375 0.9780
0.0024 8.0 6672 0.1733 0.9321 0.9438 0.9379 0.9779
0.0009 9.0 7506 0.1765 0.9347 0.9468 0.9407 0.9784
0.0002 10.0 8340 0.1763 0.9360 0.9472 0.9416 0.9789

Framework versions

  • Transformers 4.14.0.dev0
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3