File size: 2,925 Bytes
713e1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
language:
- sk
inference: false
model-index:
- name: fernet-sk-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann sk
type: wikiann
args: sk
metrics:
- name: Precision
type: precision
value: 0.9359821760118826
- name: Recall
type: recall
value: 0.9472378804960541
- name: F1
type: f1
value: 0.9415763914830033
- name: Accuracy
type: accuracy
value: 0.9789063466534702
---
# Named Entity Recognition based on FERNET-CC_sk
This model is a fine-tuned version of [fav-kky/FERNET-CC_sk](https://huggingface.co/fav-kky/FERNET-CC_sk) on the Slovak wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1763
- Precision: 0.9360
- Recall: 0.9472
- F1: 0.9416
- Accuracy: 0.9789
## Intended uses & limitation
Supported classes: LOCATION, PERSON, ORGANIZATION
```
from transformers import pipeline
ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1259 | 1.0 | 834 | 0.1095 | 0.8963 | 0.9182 | 0.9071 | 0.9697 |
| 0.071 | 2.0 | 1668 | 0.0974 | 0.9270 | 0.9357 | 0.9313 | 0.9762 |
| 0.0323 | 3.0 | 2502 | 0.1259 | 0.9257 | 0.9330 | 0.9293 | 0.9745 |
| 0.0175 | 4.0 | 3336 | 0.1347 | 0.9241 | 0.9360 | 0.9300 | 0.9756 |
| 0.0156 | 5.0 | 4170 | 0.1407 | 0.9337 | 0.9404 | 0.9370 | 0.9780 |
| 0.0062 | 6.0 | 5004 | 0.1522 | 0.9267 | 0.9410 | 0.9338 | 0.9774 |
| 0.0055 | 7.0 | 5838 | 0.1559 | 0.9322 | 0.9429 | 0.9375 | 0.9780 |
| 0.0024 | 8.0 | 6672 | 0.1733 | 0.9321 | 0.9438 | 0.9379 | 0.9779 |
| 0.0009 | 9.0 | 7506 | 0.1765 | 0.9347 | 0.9468 | 0.9407 | 0.9784 |
| 0.0002 | 10.0 | 8340 | 0.1763 | 0.9360 | 0.9472 | 0.9416 | 0.9789 |
### Framework versions
- Transformers 4.14.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|