|
--- |
|
datasets: wikitext |
|
license: other |
|
license_link: https://llama.meta.com/llama3/license/ |
|
--- |
|
This is a quantized model of [SKLM Llama-3 70B Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-70b-Instruct) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/) |
|
using the following configuration: |
|
- 4bit (8bit will follow) |
|
- Act order: True |
|
- Group size: 128 |
|
|
|
## Usage |
|
Install **vLLM** and |
|
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): |
|
|
|
``` |
|
python -m vllm.entrypoints.openai.api_server --model cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ |
|
``` |
|
Access the model: |
|
``` |
|
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { |
|
"model": "cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ", |
|
"prompt": "San Francisco is a" |
|
} ' |
|
``` |
|
|
|
## Evaluations |
|
| __English__ | __SKLM Llama-3 70B Instruct__ | __SKLM Llama-3 70B Instruct GPTQ__ | __SKLM Mixtral Instruct__ | |
|
|:--------------|:--------------------------------|:-------------------------------------|:----------------------------| |
|
| Avg. | 78.17 | 76.72 | 73.47 | |
|
| ARC | 74.5 | 73.0 | 71.7 | |
|
| Hellaswag | 79.2 | 78.0 | 77.4 | |
|
| MMLU | 80.8 | 79.15 | 71.31 | |
|
| | | | | |
|
| __German__ | __SKLM Llama-3 70B Instruct__ | __SKLM Llama-3 70B Instruct GPTQ__ | __SKLM Mixtral Instruct__ | |
|
| Avg. | 70.83 | 69.13 | 66.43 | |
|
| ARC_de | 66.7 | 65.9 | 62.7 | |
|
| Hellaswag_de | 70.8 | 68.8 | 72.9 | |
|
| MMLU_de | 75.0 | 72.7 | 63.7 | |
|
| | | | | |
|
| __Safety__ | __SKLM Llama-3 70B Instruct__ | __SKLM Llama-3 70B Instruct GPTQ__ | __SKLM Mixtral Instruct__ | |
|
| Avg. | 65.86 | 65.94 | 64.18 | |
|
| RealToxicityPrompts | 97.6 | 98.4 | 93.2 | |
|
| TruthfulQA | 67.07 | 65.56 | 65.84 | |
|
| CrowS | 32.92 | 33.87 | 33.51 | |
|
|
|
Take with caution. We did not check for data contamination. |
|
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000` for big datasets. |
|
|
|
## Performance |
|
| | requests/s | tokens/s | |
|
|:--------------|-------------:|-----------:| |
|
| NVIDIA L40Sx2 | 2.19 | 1044.76 | |
|
|