File size: 2,190 Bytes
e2a0982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned_gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: gtzan
type: gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.75
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned_gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8025
- Accuracy: 0.75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7782 | 1.0 | 113 | 1.7870 | 0.49 |
| 1.2942 | 2.0 | 226 | 1.3317 | 0.62 |
| 1.0869 | 3.0 | 339 | 1.0283 | 0.73 |
| 0.5358 | 4.0 | 452 | 0.9647 | 0.72 |
| 0.6048 | 5.0 | 565 | 0.7985 | 0.76 |
| 0.4135 | 6.0 | 678 | 0.8013 | 0.75 |
| 0.3721 | 7.0 | 791 | 0.8025 | 0.75 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.21.0
|